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1 Introduction

The UK has a target of over 30% energy from renewables by 2020 to reduce its CO2 emis-
sions. For this, onshore and offshore wind have to increase their capacity, from 10.1GW and
5.3GW in may 2017, respectively to 13GW and 18GW by 2020. The SUPERGEN Wind En-
ergy Technologies Consortium is a UK wind energy research consortium which was originally
established by the EPSRC on 23rd March 2006 as part of its Sustainable Power Generation
and Supply(SUPERGEN) programme. Its aim is to develop academic, industrial and policy
linkages and to lead the technology strategy for driving forward UK wind energy research and
for exploiting the research outcomes. This in turn should address the medium term challenges
of scaling up to multiple wind farms, considering how to better build, operate and maintain
multi-GW arrays of wind turbines whilst providing a reliable source of electricity whose charac-
teristics can be effectively integrated into a modern power system such as that in the UK. The
consortium is led by Strathclyde University, but also includes Durham, Loughborough, Cran-
field, Manchester, Oxford, Surrey, Bristol, Imperial, Dundee and STFC, with expertise in wind
turbine technology, aerodynamics, hydrodynamics, materials, electrical machinery, control, re-
liability and condition monitoring, and has the support of 18 industrial partners, including
DNV GL and the Offshore Renewable Energy Catapult. Its activities were renewed in 2014,
and is funded to 2019.

This report is related to work package 5.1, on innovative blade design for improved load
control, where the use of sub-modelling is explored in ABAQUS to determine the extent to
which this might improve the modelling and representation of the structural loads without
adding unduly to processing time.

The operating lifetime of wind turbine blades is controlled by the fatigue properties of the
composite materials they’re made of. These materials are generally provided as fabrics (non-
crimp fabrics, uniweave, woven), i.e. they have a 2D nature that is reconfigured into 3D shapes
when the blade and its internal features (e.g. spars) are formed. Methods to assess fatigue life
damage for 2D composites with in-plane loading have been the subject of several studies [3]
but in regions such as the T-joint joining the blade spar to the aerodynamic profile, through
thickness effects are non-negligible and 3D stress states have to be taken into account.

The initiation of damage in these regions can occur well before what would be expected in
the base material subjected to in-plane loading. Numerical studies of these geometry-related
fatigue issues are generally performed on test models of dimensions in the order of 0.1m [6, 10,
7], using a very fine solid elements mesh. Wind turbine blade FE models available for academic
purposes have lengths two to three orders of magnitude larger than these T-joint test samples:
e.g. the DTU 10MW turbine is 86.5m long [1]. These blade FE models use shell elements
and including the fine mesh from the T-joint for an accurate stress assessment could be both
computationally challenging and need a detailed knowledge of the geometry.

Here, a method is proposed to obtain a detailed description of the T-joint stresses, where a
shell mesh size around the T-joints similar to the one described in DNV-RP-C203 [4], i.e. a size
equal to the thickness (t) of the shell, is used. A dummy blade subjected to gravity, centrifugal
loading and aerodynamic loading from blade element momentum (BEM) is constructed to verify
the method. Firstly, test cases are built using the same mesh/geometry, but different loading
for each test case. Detailed stresses around the T-joint for the test cases are obtained using
submodels. A vector of strains/stresses in the dummy blade around the T-joint are projected
into a subspace made of similar vector from the shell models of the test cases. The coefficients of
the decomposition can then be used to recompose the detailed stresses on the T-joint. Two test
cases geometries and several vectors for the decomposition procedure are used in this report.
The software abaqus has been used to carry out the FE analysis.
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2 T-joint geometry

The T-joint geometry used here is the same as the one used in [10, 7], and its geometry and
layup are described in Figure 1.Dimensions are in mm and this geometry has been modelled
with a depth of 50mm.

Figure 1: T-joint geometry

The T-joint is modelled using solid elements in the submodels, and using shells in the test
cases and the blade dummy model. The orientation in all the models has been created such
that the second axis corresponds to the direction of the fibre. The material properties of the
uniaxial composite are: elastic moduli E1 = E3 = 9 GPa, E2 = 38 GPa; Poisson’s ratios
ν13 = ν23 = 0.3, ν12 = 0.071; and the shear moduli G12 = G23 = 3.6 GPa, G13 = 3.46 GPa. Due
to the elements orientation, stresses S11 are perpendicular to the fibre, S22 are in the direction
of the fibre and S12 are shear stresses.

3 Blade element momentum loading on dummy blade

To verify the method (proposed in the next section), a dummy blade was created using S4R
shell elements. This blade geometry is a simple extruded profile of length 25m, with the same
layup at the T-joint as the one discussed in section 2, but the layup extends to create a profile.
It is subjected to gravity, centrifugal load and pressures. The pressures are applied on four areas
(top, bottom , leading edge, trailing edge), and on each area the pressure applied varies with Z
(the distance to the root).The top and bottom pressures have the same norm but opposite value,
so that both result in the same vertical force, the same happens with the leading edge/trailing
edge pressures. The geometry of the profile with the mesh around the T-joint, and the surface
variation in pressure with Z can be seen in Figure 2
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(a) Long extruded profile mesh detail

(b) Long extruded profile pressure distribution

Figure 2: Geometry and aerodynamic loading of dummy blade

The section forces are obtained from basic rotor disc theory: it is assumed (for this dummy
model check) that there are 3 blades. The forces in the Y direction (perpendicular to the rotor)
and in the X direction (in the rotor plane, tangential to the blade) can be obtained from [2]

Fy = 2ρa(1 − a)v20A/3 Fx = 2ρ(1 − a)v0AΩa′R/3 a = 1/3 a′ =
a(1 − a)

λR/Rmax

(1)

with ρ = 1.225kg/m3 the air density, v0 the wind speed, A the area of an anular ring of the
actuator disc considered (A = π(R2

e − R2
i ), a = 1/3 the the axial flow induction factor that

maximizes the power coefficient when the turbine is modelled as an actuator disc (e.g. [2]),
a′ is the tangential flow induction factor, Ω is the angular velocity, R the radius of the ring
considered, Rmax is the total radius of the rotor, λ = Ω ∗ Rmax/v0 is the tip speed ratio. The
blade is also subjected to centrifugal load (Ω = 2.8 rad/s) and gravity load, with the gravity
pointing in the -z direction, the root of the blade located at Z=0, and the tip at Z=-25m.
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4 Proposed method

This work tries to extend the concept of hot spot method, e.g. in DNV-RP-C203 (developed
for offshore steel structures), to composites. The code provides, in general, stress concentration
factors for geometric details, and, in section 4, discusses fatigue for structures assessed using
finite element analysis. It calculates the geometric stress concentration factor (SCF) with the
FE model, and accounts for a notch factor resulting from the weld geometry/residual stresses,
etc, that is included by using the appropriate S-N curves. In the code, the shells have a
(recommended) mesh size of the thickness of the element (t), resulting in square elements of
size t, referred to as a t× t mesh. The stress components parallel and perpendicular to the weld
at the centroid of the two elements next to the weld (i.e. distances 0.5t and 1.5t from the weld)
are obtained, and linearly extrapolated to the weld toe. This method could not be extrapolated
to composites directly, as calculating stress concentration factors for two different loads lead to
different results, and this first attempt used hot-spot stresses from a shell model, and detailed
stresses from a submodel. Nonetheless, two ideas are used from the hot-spot method: the
need to relate the stresses from a shell FE model to the ones in a geometrical detail, and the
guidelines for mesh size around the T-joints.

There are two ways in which detailed stresses can be calculated at the T-joints: by directly
including the fine mesh or using a submodel. Detailed stresses have been calculated on trailing
edges of wind turbine blades by using directly a fine mesh in [5], but only a section of the blade
was modelled, and continuum shell elements were used for positions which were a significant
distance from the trailing edge, to reduce computational time. Alternatively, shell-to-solid
ties could be used to include a solids mesh within a shell mesh. Here, a submodel of the T-
joint is used, i.e. firstly analyzing the shell model of the blade and then imposing boundary
conditions from this model into a solid elements model of the T-joint. Both methods would
be computationally intensive if detailed stresses are needed for the whole T-joint of a 80-100m
long blade, due to the small mesh size needed.

To avoid modelling directly the T-joints for the whole blade, here a more convoluted method
is proposed, that should allow savings both in computational time and in pre-processing time
due to using a simpler geometry.

The steps of the proposed method are as follow

1 Create test cases using shell elements. All the test cases use the same geometry but
different loads.

2 Extract vectors of data v for each of the test cases. These vectors are described in
subsection 4.1.

3 Create solids submodels for the T-joint region of the test cases, so as to have a detailed
representation of the stresses at the T-joint for the test cases

4 Create a matrix whose columns are the data vectors from the test cases, i.e. V =
[v1, . . . ,vi]. Calculate its Moore-Penrose pseudo-inverse V−1MP

5 From the blade shell model subjected to aerodynamic, centrifugal, gravity, gyroscopic
loading: obtain a vector of data vg, similar to the one from the test cases.

6 Pre-multiply the vector from 5 by the Moore-Penrose pseudo-inverse of 4. This results in
a vector of coefficients α = V−1MPvg.

7 Combine the test cases submodels using the vector of coefficients α from 6. This results
in detailed stresses around the T-joint.
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it is noted that steps 1 to 4 only need to be done once for a given T-joint geometry, while
steps 5 to 7 can be carried out for each loading and location in the T-joint, as different vectors
of coefficents α will be obtained.

4.1 Vectors of the Subspace Used in the Proposed Decomposition
Method

Subspace decomposition is a popular method when reducing the size of a system. For example,
when considering the FE model of a system affected by uncertainty, a Krylov subspace [9] and
eigenvectors of the original system [8] amongst others, have been used. In these references, the
reduction is applied to a system that uses directly the structure matrices. But here the T-joint
mass and stiffness matrices are ignored, and the T-joint detailed stresses are assumed to depend
on the data (e.g. strains and stresses) measured on a few shells, and these ones are rearranged
into a vector. As several datum are measured, a vector basis with the same number of vectors
as measured datum would allow for direct inversion of the matrix V in step 6 in the method
description. This approach has not been implemented because it would imply using the same
number of test cases as there are datum, and defining these test cases representative of the
loading within a beam is challenging. The subspace used instead is based on decomposing the
blade shell results into the results of well-selected test cases. Several options in terms of data
measured and test cases can be used.

Different types of data can be used; so that several basis for the subspace decomposition
have been tried. The data used here have been extracted at the integration point of the shell
elements next to the T-joint, located on the outer skin on both sides of the shear web, and on
the shear web. As the elements have a size of the thickness (t) of the shell they represent, the
data has been extracted at distances from the T-joint of 0.5t, 1.5t, 2.5t. Hot-spot stresses, i.e.
extrapolations to the T-joint location using data from 0.5t and 1.5t locations, have also been
used. The figure below highlights the elements where data has been extracted

Figure 3: Elements around the T-joint where data is extracted

The vectors of data perused, so as to assess which ones works better, have been

Vector 1 Shell element membrane strains and curvatures in local 1 and 2 axis (outputs ‘SE1’,‘SE2’,
‘SE3’, ‘SK1’, ‘SK2’, in abaqus) are extracted at 0.5t and 1.5t, i.e. for an element on
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the outer skin and right side of the shear web, and at a distance 1.5t of the T-joint,
a vector v′OSR,1.5 = [SE1, SE2, SE3, SE3, SK1, SK2] is created. This leads to 5
(strains/curvatures) x 2 (distances from T-joint) x3 (sides around the T-joint: outer
skin right, outer skin left and shear web) =30 datum to be used in each data vector
of the test cases/global model, so that the data vector is given by

v =


vOSR,0.5

vOSR,1.5

vOSL,0.5

vOSL,1.5

vSW,0.5

vSW,1.5

 with vOSR,0.5 =


SE1OSR,0.5

SE2OSR,0.5

SE3OSR,0.5

SK1OSR,0.5

SK2OSR,0.5

 (2)

Vector 2 Shell element membrane strains and curvatures in local 1 and 2 axis extrapolated to
the T-joint location (from 0.5t and 1.5t data), i.e. hot-spot strains and curvatures
from shell elements. The data to be extracted is as in Vector 1, but the data vector
is smaller (size 15) due to the hot-spot extrapolation.

v =

vOSR,HS

vOSL,HS

vSW,HS

 with vOSR,HS =


SE1OSR,HS

SE2OSR,HS

SE3OSR,HS

SK1OSR,HS

SK2OSR,HS

 (3)

Vector 3 Shell element membrane stresses at the top and bottom of the shells (‘S11’, ‘S22’
and ‘S12’) extrapolated to the T-joint from valuest at 0.5t and 1.5t. This leads to
3 (stresses) x2 (top/bottom shell location) x 2 (distances from T-joint) x3 (shells
around the T-joint) =36 datum to be extracted, but the data vector is actually of
size 18 as the hot-spot data (instead of 0.5t and 1.5t data) are used.

v =


vOSR,top,HS

vOSR,bottom,HS

vOSL,top,HS

vOSR,bottom,HS

vSW,top,HS

vSW,bottom,HS

 with vOSR,top,HS =

S11OSR,top,HS

S22OSR,top,HS

S12OSR,top,HS

 (4)

Vector 4 Shell membrane strains at the top and bottom of the shells (‘E11’, ‘E22’ and ‘E12’
outputs in abaqus for the topmost and bottommost section points of the shells) at
distances 0.5t and 1.5t of the T-joint. This leads to 3 (strains) x2 (top/bottom shell
location) x 2 (distances from T-joint) x3 (shells around the T-joint) =36 datum to be
used in each data vector of the test cases/global model.

v =


vOSR,top

vOSR,bottom

vOSL,top

vOSR,bottom

vSW,top

vSW,bottom

 with vOSR,top =


E11OSR,top,0.5t

E22OSR,top,0.5t

E12OSR,top,0.5t

E11OSR,top,1.5t

E22OSR,top,1.5t

E12OSR,top,1.5t

 (5)
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Vector 5 Shell membrane strains at the top and bottom of the shells extrapolated to the T-joint
location (from strains at 0.5t and 1.5t). The data vector has a size of 3x2x1x3=18

v =


vOSR,top

vOSR,bottom

vOSL,top

vOSR,bottom

vSW,top

vSW,bottom

 with vOSR,top =

E11OSR,top,HS

E22OSR,top,HS

E12OSR,top,HS

 (6)

Vector 6 Shell membrane strains at the top and bottom of the shells at distances 0.5t, 1.5t and
2.5t from the T-joint. The data vector has a size of 3x2x3x3=54

v =


vOSR,top

vOSR,bottom

vOSL,top

vOSR,bottom

vSW,top

vSW,bottom

 with vOSR,top =



E11OSR,top,0.5t

E22OSR,top,0.5t

E12OSR,top,0.5t

E11OSR,top,1.5t

E22OSR,top,1.5t

E12OSR,top,1.5t

E11OSR,top,2.5t

E22OSR,top,2.5t

E12OSR,top,2.5t


(7)

5 Test models

The viability of two different geometries for the test cases is assessed, by creating different
test cases for each geometry. The first geometry consists of using a shell model with the same
geometry as the submodel (coupon geometry) and its test cases are discussed in subsection 5.2,
while the second is a simplified version of a blade section with longer chord than out-of-plan
length and is discussed in subsection 5.3. Each test case of each geometry has been subjected
to different boundary conditions (BCs) and loading. It is noted that, although a blade should
be analyzed using the nonlinear geometry capabilities of abaqus, the aim of the test cases is
to recreate the BCs of the submodel through a linear superposition of test cases using the
coefficients from α, and it is assumed that the geometrical nonlinearities within the submodel
are negligible.

5.1 Submodel

The same submodel geometry (nodes, elements) is run with each test model of both subsections
5.2 and 5.3, and also with the dummy blade, so that the only variation between submodel runs
are the global model used, the steps definition (so as to match those of the global model), and
the location/angle where it is instanced. The layup and geometry is as defined in Section 2.
The mesh, see Figure 4, uses fully integrated solid elements. Initial models used continuum
shell elements and hourglassing problems were observed. As using the maximum hourglass
stiffness allowed by abaqus did not solve the hourglass problem, fully integrated continuum
shell elements are not available in abaqus and the aspect ratio of the elements allowed to use
solid elements intead of continuum shells, they were swapped to fully integrated first order solid
elements.

In Figure 4, the elements where stresses are extracted to obtain detailed stresses in Step
3 of section 4 are highlighted, and several distances across the path where those stresses are
extracted are provided. For all the plies in the shear web, the distance across the radius of the
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bend is scaled so that they have the same total distance, and this distance matches the one
used for the shell elements in section 6.

(a) Submodel elements where
data is extracted

(b) Distances along the outer
skin elements

(c) Distances along the shear
web elements

Figure 4: Submodel elements where stresses are extracted, and distances used to plot the results

5.2 Coupon test models

The coupon geometry/layup is as in Section 2, with a depth of 5cm, and the FE model mesh
is displayed below, with the different nodes where boundary conditions are applied highlighted
in red. It is noted that equations linking corresponding nodes on the two T sides of the T-joint
have been defined, so that the difference in displacements and rotations between the two nodes
is equal to the displacement/rotation of a dummy node.

(a) Node fixed at top (b) Nodes for sides BCs

(c) Nodes for top BCs (d) Nodes for T-joint faces BCs

Figure 5: Nodes and elements where BCs/loads are applied to the T-joint tests mesh
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In Figure 5, the T-joint is a T in the x-y plane, with the shear web pointing upwards in the
direction of axis y. The test cases using this geometry are:

1. Pull-out: the node from Figure 5a is fixed in x, z and rotation around z (Rz), the nodes on
Figure 5b are fixed in y and Rz, the nodes in Figure 5c are displaced 0.001m in y and fixed
in x and Rz. The dummy nodes have zero displacement/rotation (i.e the corresponding
nodes on the front and rear faces have same displacements/rotations).

2. Tension: the node from Figure 5a is fixed in x, z and Rz, the nodes on Figure 5b are fixed
in Rz, the nodes in Figure 5c are fixed in Rz. The dummy nodes have a displacement of
0.001m in z, and their remaining degrees of freedom (dofs) are fixed.

3. Rotation around X axis: the node from Figure 5a is fixed in x, y, z and Rz, the nodes
on Figure 5b are fixed in Rz, the nodes in CouponShellYmax are fixed in Rz. The
dummy nodes have a displacement in z that varies linearly with their Y location, and
their remaining dofs are fixed.

4. Rotation around Y axis: the node from Figure 5a is fixed in x, y, z and Rz, the nodes
on Figure 5b are fixed in Rz, the nodes in Figure 5c are fixed in Rz. The dummy nodes
have a displacement in z that varies linearly with their Y location, and their remaining
dofs are fixed.

5. Torsion: the node from Figure 5a is fixed in x, y, z and Rz, the nodes on Figure 5b are
fixed in Ry, Rz, and z; the nodes in Figure 5c are fixed in Rz. The dummy nodes have a
displacement in x of 0.001m (the two T-joint faces are separated in x, so that the model
is sheared), but other dofs are equal on corresponding nodes. The nodes on one of the
faces are fixed in Z, Rx and Ry (so that they are also fixed on the other face).

These displacements are displayed below (multiplied by a scale factor auto-computed by abaqus)
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(a) Coupon pull-out test case deformation (b) Coupon tension test case deformation

(c) Coupon Rotation around X axis test case
deformation

(d) Coupon Rotation around Y axis test case
deformation

(e) Coupon torsion test case deformation

Figure 6: Test cases magnitude of displacement for the T-joint geometry
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5.3 Blade section test models

When the method was applied using the coupon test model discussed in subsection 5.2, the
combination of stresses from the test cases did not match the results from the dummy blade.
These poor results will be discussed in subsection 6.1. The blade section test model was
developed to address this issue. The geometry of this test model has the same layup at the T-
joint as the coupon, but the layup extends to create a profile, so that the boundary conditions
on the top and sides of the T-joint are closer to reality. The profile and mesh are given in
Figure 7a, together with the nodes and elements that have BCs/loads applied to them in the
test cases. These test models also use equations linking the corresponding nodes of the two
sides of the blade section highlighted in Figure 7c. Each of these equations includes a term
depending on a dummy node, so as to specify the difference in displacement between the two
mesh nodes affected by the equation.

(a) Blade section test case geometry (b) Blade section test fixed node

(c) Blade section nodes used in equations
(d) Blade section elements where pressure is ap-
plied

Figure 7: Nodes and elements where BCs/loads are applied to the blade section tests mesh
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The test cases used with this geometry are

1. Pull-out: the node from Figure 7b is fixed in all dofs, the equations dummy nodes are fixed
in all dofs, i.e. the corresponding nodes on Figure 7c have the same displacement/rotation.
A pressure of 10Pa is applied on the surfaces from Figure 7d.

2. Tension: the node from Figure 7b is fixed ina all dofs. The equations’ dummy nodes have
a displacement of 0.001 in z, and their remaining dofs are fixed.

3. Rotation around X axis: the node from Figure 7b is fixed in x, y, z and Rz. The dummy
nodes have a displacement in z that varies linearly with their Y loacation, and their
displacements in x and y, and rotations Ry, Rz are fixed.

4. Rotation around Y axis: the node from Figure 7b is fixed in x, y, z and Rz. The dummy
nodes have a displacement in z that varies linearly with their Y loacation, and their
displacements in x and y, and rotations Rx, Rz are fixed.

5. Torsion: the node from Figure 7b is fixed in x, y, z and Rz. The dummy have a displace-
ment in x and y proportional to the centre of the section (x and y equal to 0), leading to
a rotation of 1.146 degrees of the front face with respect to the back face.

These displacements are displayed below (multiplied by a scale factor auto-computed by abaqus)

13



(a) Coupon pull-out test case deformation (b) Coupon tension test case deformation

(c) Coupon Rotation around X axis test case
deformation

(d) Coupon Rotation around Y axis test case
deformation

(e) Coupon torsion test case deformation

Figure 8: Test cases magnitude of displacement for the blade section tests mesh

6 Results

All the test cases are run as linear analyses. Scripts extracting results of stresses (S11, S22,
S12) for each ply represented of the T-joint at the central section of the submodel have been
created. These scripts can obtain stress results from the dummy blade, both from the shells
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and the submodels. They can also apply Step 7 in subsection 4 to stresses from test cases using
shell elements (i.e. the test cases global model) and using solid elements (i.e. the submodels
of these global models). Here, only the shell stresses obtained from the dummy blade and the
ones obtained from combining tests cases global models are displayed in subsections 6.1 and
6.2.

As a sanity check, it was verified that vi −V−1MPvi is zero for each vi obtained in Step 2 of
section 4.

Unfortunately, results from the two test cases attempted were not very accurate, as can be
seen in the Figures of subsections 6.1 and 6.2.

6.1 T-joint test cases

Results are plotted for some stresses of some plies, indicated in the caption of each subfigure
in figures 9, 10, 11 and 12. The comparison is only performed for shell results, i.e. stresses on
the blade model and in the linear combination of shell test cases. It is clear from the lack of
agreement that the geometry is not suitable for the method developed.
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(a) S11, Outer Skin Bottom of ply-1

(b) S11, Outer Skin Top of ply-15

(c) S12, Outer Skin middle section point of ply-5 (UD ply)

(d) S22, Outer Skin Bottom of ply-1

Figure 9: Coupon test cases stress results for the outer skin
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(a) S22, Outer Skin middle section point of ply-5 (UD ply)

(b) S22, Outer Skin middle section point of ply-6 (first -45 ply)

(c) S22, Outer Skin middle section point of ply-15 (last 45 ply)

(d) Legend

Figure 10: Coupon test cases stress results for the outer skin
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(a) S11, Shear Web Bottom of ply-1 (on the surface of the SW)

(b) S11, Shear Web last section point of ply-15 (-45, in contact with OS ply)

(c) S12, Shear Web ply-5

(d) S22, Shear Web Bottom of ply-1 (on the surface of the SW)

Figure 11: Coupon test cases stress results for the shear web
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(a) S22, Shear Web ply-5

(b) S22, Shear Web ply-10

(c) Legend

Figure 12: Coupon test cases stress results for the shear web

6.2 Blade section test cases

As for the previous test cases geometry, results are plotted in figures 13, 14, 15 and 16 for
some stresses of some plies, indicated in the caption of each subfigure, and the comparison is
only performed for shell results. It is clear from the lack of agreement that the geometry is not
suitable for the method developed.
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(a) S11, Outer Skin Bottom of ply-1

(b) S11, Outer Skin Top of ply-15

(c) S12, Outer Skin middle section point of ply-5 (UD ply)

(d) S22, Outer Skin Bottom of ply-1

Figure 13: Blade section test cases stress results for the outer skin
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(a) S22, Outer Skin middle section point of ply-5 (UD ply)

(b) S22, Outer Skin middle section point of ply-6 (first -45 ply)

(c) S22, Outer Skin middle section point of ply-15 (last 45 ply)

(d) Legend

Figure 14: Blade section test cases stress results for the outer skin
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(a) S11, Shear Web Bottom of ply-1 (on the surface of the SW)

(b) S11, Shear Web last section point of ply-15 (-45, in contact with OS ply)

(c) S12, Shear Web ply-5

(d) S22, Shear Web Bottom of ply-1 (on the surface of the SW)

Figure 15: Blade section test cases stress results for the shear web
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(a) S22, Shear Web ply-5

(b) S22, Shear Web ply-10

(c) Legend

Figure 16: Blade section test cases stress results for the shear web

7 Conclusions

A method to calculate detailed stresses at the T-joints of blades has been presented. The
method is very dependent on the test cases used (both geometry and load cases) and on the
vectors of data it uses to perform the decomposition. Further developments will focus on
improving the test cases, by perusing the use of both a different geometry and different combi-
nations of boundary conditions and loading.
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