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Abstract—The work undertaken in this research focuses
on advanced condition monitoring and fault detection
methods for wind turbines (WTs). Fourier Transform
(FFT) and Short Time Fourier transform (STFT) algo-
rithms are proposed to effectively extract fault signatures
in generator current signals (GCS) for WT fault diagnosis.
With this aim, a WT model has been implemented in the
MATLAB/Simulink environment to validate the effective-
ness of the proposed algorithms. The results obtained with
this model are validated with experimental data measured
from a physical test rig. The detection of rotor eccentricity
is discussed and conclusions drawn on the applicability
of frequency tracking algorithms. The newly developed
algorithms are compared with a published method to
establish their advantages and limitations.

Index Terms—Wind turbine, Generator, Condition mon-
itoring, Current Signature, Fault signature, Fault detec-
tion, Diagnosis.

I. INTRODUCTION

Most components in wind turbines (WTs) are
subjected to different sorts of failures during the
operation, including blades, yaw systems, gearboxes
rotor and shaft, bearings, generators, etc. The faulty
component in WTs might change the main char-
acteristics in the monitored signal. Traditionally,
WTs condition monitoring system (CMS) is super-
vised using vibration signals but measuring such
mechanical quantities is often expensive. Indeed,
vibration sensors such as piezoelectric accelerom-
eters and associated load amplifier are often ex-
pensive. Moreover, the ability of a clear detection
of mechanical faults by vibration measurements
potentially depends in the sensor locations [1]. For
example, accelerometers need to be mounted near
to each possible faulty component of the WT. To
overcome this problem, the detection could be based

on the measurement of stator currents which are
already available for control purposes which means
no additional sensors or data acquisition devices
are needed [2]. However, there are challenges in
using current measurements for WT CMS and fault
detection. First, it is a challenge to extract WT
fault signatures from non-stationary current mea-
surements, due to variable-speed operating condi-
tions of WTs. Moreover, the useful information in
current measurements for WT usually has a low
signal to noise ratio, and thus very difficult to extract
without a dedicated signal processing.

CMS can be used to help schedule maintenance
and reduce downtime [3]. However, many of these
techniques evaluate WT state of health in terms of
a binary state, i.e. either faulty or not. They provide
technical insights and detect early abnormalities, but
cannot forecast the expected degree of deterioration
over a particular time frame [4]. For example, a
gearbox is either broken and needs replacement
or fixing, or it is fine until the next scheduled
maintenance operation. CMS are carried out based
using knowledge of the characteristics of signals
obtained from a turbine. These signals are often
non-stationary signals whose characteristics change
over time due to the time-varying nature of machine
operations and fault effects [5]. To date, the majority
of signal processing techniques used in the condition
monitoring of rotating machinery have been devel-
oped based on stationary signals and cannot reveal
the time information of any frequency changes.
To enable the benefits of a truly condition-based
maintenance philosophy to be realized, robust, ac-
curate and reliable algorithms, which provide main-
tenance personnel with the necessary information to



make informed maintenance decisions, will be key.
The work undertaken in this research focuses on
advanced signal processing and statistical analysis
techniques to lead to better remaining useful life
prediction which will results in a much optimized
maintenance schedule and less unscheduled main-
tenance events. The proposed method is based on
time-frequency analysis to capture the fault fre-
quencies from the measured signal and monitor the
fault frequencies over time. This will provide the
capability to potentially take historical and current
data to create long-term forecasts of future asset
conditions.

The following approach was taken in this paper:

• The data used in this work is recorded from
a physical test rig at Durham University. De-
tails of the data and test rig are presented
in [4]. During the tests, rotor unbalance fault
levels were implemented on the test rig by
successively adding two additional external re-
sistances to phase A of the rotor circuit through
an external load bank. They correspond to two
levels of rotor unbalance of 21% and 43%,
respectively, given as a percentage of the rotor
balanced phase resistance;

• A WT generator simulation model was also
developed and validated with the experimental
data in order to demonstrate the kind of results
expected under a range of operating condi-
tions. The model allows for certain nonlinear
and time-varying characteristics and takes into
account varying wind speeds similar to those
experienced by WTs;

• Other aspects of this work are related to the
use of the Gabor transform for time- frequency
analysis. Another aspect is the observation of
the change of the fault signature for different
wind speed and fault level cases. This observa-
tion was connected theoretically with what is
known as fault prognostics process;

• Finally, the Gabor transform for time- fre-
quency analysis was proposed as a potential
method for detecting early anomalies in WT
generator operation;

II. FAULT SIGNATURE ANALYSIS IN
WIND TURBINE CURRENT SIGNALS

Mechanical faults such as unbalanced load and
shaft misalignments essentially create a rotor eccen-
tricity inside the motor [6]. These types of faults
introduce sideband harmonics around the funda-
mental frequency in the motor current spectrum.
Potentially, these fault signatures could be used to
detect incipient failure if they can be clearly de-
tected during the early stages of a developing fault.
It has been reported that during a rotor eccentricity
event, the sideband currents are given by [7]

fecc,d =

(
1± k(1− s)

p

)
.f (1)

Where fecc,d and f are the rotor fault and fun-
damental frequency components for a doubly fed
induction generator (DFIG), respectively, k is an
integer (k=1, 2, 3, ...) and p the number of pole
pairs.

III. SIGNAL PROCESSING TECHNIQUES
FOR FAULT DETECTION

Signal processing is used in WT fault studies
and is becoming an important class of tools to
facilitate the extraction of fault-related features in
the monitored signals, and then, the fault detection
can be automated via threshold comparison or prob-
ability analysis. The fault level and location can
then be identified by a classification method, such
as artificial neural networks, fuzzy logic, support
vector machines, etc. A key aspect of a reliable and
efficient condition monitoring technique in WTs is
determining which parameters should be measured
and to what accuracy, as well as which signal pro-
cessing methods provide the best characterization
and analysis of the signals to be investigated.

A. Fast Fourier Transform
The Fast Fourier Transform (FFT) is one of the

most well-known methods in the area of signal
processing and has been widely used in fault di-
agnosis for Motors. The FFT algorithm is used to
convert the time domain signal into a frequency
domain signal in order to extract features related
with characteristic defects. Fig. 1 shows a Fourier
Transform of the stator current from the Durham
test generator operating in a normal healthy state.



The upper plot is actual measured data and the
lower plot is the WT generator simulation model
set up using similar parameters to the test rig. The
generator was driven close to a fixed rotational
speed corresponding to a fixed wind speed, but with
a degree of variation corresponding to a certain
simulated level of wind turbulence.
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Fig. 1: The FFT of GCSs for the healthy case.

Fig. 2: The FFT of GCSs for the rotor unbalance
case.

As can be seen in Fig. 1, there are unexpected
harmonics around the even and odd harmonics even
when operating in a healthy state (no unbalance).
This might be caused by manufacturing and instal-
lation errors or might be frequency components that
are apparent when the generator is first turned on.

Fig. 2 shows a similar spectrum, but this time the
rotor is subject to a degree of unbalance. Although
the amplitudes of those frequency components in the
rotor unbalance case shown in Fig. 2 are different
from those in Fig. 1, it is difficult to distinguish
the two cases. The fault signature frequencies are
defined and labelled in Fig. 2 according to Equation
(1).

B. Short Time Fourier Transform (STFT)

The limitations of the direct application of the
Fourier transform methods, and their inability to
localize a signal in both the time and frequency
domains, was realized very early on in the
development of radar and sonar detection. The
Hungarian electrical engineer and physicist Gabor
Denes (Physics Nobel Prize in 1971 for the
discovery of holography in 1947) was the first
person to propose a formal method for localizing
both time and frequency [8]. His method is
known as the short-time Fourier transform (STFT),
STFT of a continuous-time signal x(t) is defined as:

STFT (f, τ) =

∞∫
−∞

x(t)g(t− τ)e−j2πft dt (2)

where g(t− τ) is the window function whose posi-
tion is translated in time by τ . The integration over
the parameter τ slides the time-filtering window
along the entire signal in order to pick out the
frequency information at each instant of time. Fig.
3 gives a clear illustration of how the time filtering
scheme of STFT works. In this figure, the time
filtering window is centered at with a width a.
Thus the frequency content of a window of time is
extracted and is modified to extract the frequencies
of another window. The definition of the STFT
captures the entire time-frequency content of the
signal. Indeed, the STFT is a function of the two
variables time and frequency.



Fig. 3: Graphical illustration of the STFT for ex-
tracting the time-frequency content of a measured
signal.

The key now for the STFT is to multiply the
time filter function with the original signal in order
to produce a windowed section of the signal. The
Fourier transform of the windowed section then
gives the local frequency content in time. Fig. 4
shows the generated spectrogram for the measured
stator current signal for the healthy test rig genera-
tor. It is clearly seen that the measured time signal
is comprised of various frequency components that
are seen throughout the entire time.

Fig. 4: The STFT of GCSs for the healthy case.

Fig. 5: The FFT of GCSs for the rotor unbalance
case.

Figure 5 shows the stator current spectrogram
after rotor unbalance conditions were applied. Al-
though the fault characteristic frequency compo-
nents are combined and buried in other dominant
frequency components of the current signal that
are irrelevant to the fault, the STFT captures the
moment in time when the fault actually occurs at
t=8 sec. This is clearly the main disadvantage of the
STFT, and their capability to localize the frequency
components of the measured signal in time domain,
when compared to the Fourier transform. One could
admit that this is a very apparent indication of the
fault presence using this simple approach. In order
to have a clear understanding of how we could use
the STFT for faults prognosis, the same datasets are
used again in the next example (Figure 6), this time
after applying transient rotor unbalance fault from
t=20sec to t=30 sec to see if we can still forecast
the fault over time. What is shown here is that the
fault signature frequencies are seen only during the
time between (20-30 sec). So it is clear from this
simulation, that the proposed method can be used to
provide the capability to take historical and current
data to create highly accurate long-term forecasts of
future asset conditions.



Fig. 6: The STFT of simulated GCSs for the tran-
sient fault.

IV. CONCLUSION

A new approach based on time-frequency anal-
ysis of signals has been proposed, for fault diag-
nosis WTs to lead to better remaining useful life
prediction which will result in a much optimized
maintenance schedule and less unscheduled mainte-
nance events. The simplest novelty in this work that
the use of STFT for time- frequency analysis as a
potential method for detecting and forecasting early
abnormalities over a substantial time. Preliminary
simulation results presented highlight its advantages
over the conventional Fourier transform approach,
and go on to indicate its potential and suitability.
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Abstract: The ever increasing size of wind turbines and the move to build them offshore have accelerated 
the need for optimised maintenance strategies in order to reduce operating costs. Predictive maintenance 
requires detailed information on the condition of turbines. Due to the high costs of dedicated condition 
monitoring systems based on mainly vibration measurements, the use of data from the turbine Supervisory 
Control And Data Acquisition (SCADA) system is appealing. This review discusses recent research using 
SCADA data for failure detection and condition monitoring, focussing on approaches which have already 
proved their ability to detect anomalies in data from real turbines. Approaches are categorised as (i) 
trending, (ii) clustering, (iii) normal behaviour modelling, (iv) damage modelling and (v) assessment of 
alarms and expert systems. Potential for future research on the use of SCADA data for advanced turbine 
condition monitoring is discussed. 

1. Introduction 
 The global capacity of installed wind power stood at 432 GW at the end of 2015 [1]. The industry has 

long moved on from small clusters of turbines where maintenance access was relatively straightforward and 

the overhead of sending a maintenance team in at regular intervals was not excessive. In the case of offshore 

wind farms, in particular, the cost of maintenance relative to the levelised cost of energy (LCOE) is 

significantly increased compared to onshore. According to [2], the typical cost of operation and maintenance 

(O & M) as a fraction of the LCOE is between 18% and 23% compared to 12% for onshore with recent 

European offshore O & M costs amounting to between 40 and 44 Euros/MWh [3]. The restrictions imposed 

by the offshore environment as well as the increasingly large number of machines in a typical wind farm 

means that maintenance is moving to what in the past would have been scheduled or responsive to a regime 

that is more predictive and proactive. A key element in this move has been the more intelligent monitoring 

of wind turbine (WT) state of health, generally termed condition monitoring (CM). 

So-called condition monitoring systems (CMS) have been developed by a number of manufacturers. 

These monitor several key parameters including drive train vibration, oil quality and temperatures in some 

of main subassemblies. Such systems are normally installed as additional ‘add-ons’ to the standard WT 

configuration. The significant costs of CMS – usually more than 11,000 Euros per turbine [4] – has deterred 

operators from installing these systems, although the financial benefit of early fault detection by CMS has 

been proven [5]. However, all large utility scale WTs have a standard Supervisory Control and Data 

Acquisition (SCADA) system principally used for performance monitoring. Such systems provide a wealth 
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of data at normally 10-minute resolution, though the range and type of signals recorded can vary widely 

from one turbine type to another. As CM using SCADA data is a potentially low cost solution requiring no 

additional sensors, a number of approaches using these data for early failure detection have been developed 

in recent years. 

A number of general literature reviews of WT CM have been conducted in the last decade to gather 

together information on new approaches and techniques. A comprehensive collection of CM techniques 

sorted by CM system and fault detection for different subsystems was provided by [6]. An overview of CM 

methodologies and signal processing techniques complemented by a fault tree analysis were given in [7]. A 

systematic literature review in [8] revealed the geographical contribution to this research topic and listed 

different approaches. An extensive review linked monitoring techniques with possible failures [9]. 

Considerations of the advantages, disadvantages, costs, online feasibilities, fault diagnosis abilities and 

deployment statuses of CM methodologies were discussed in [5]. The latest review considering complexity, 

capability, signal-to-noise ratio, sampling frequency and cost of multiple approaches was given in [10, 11]. 

However, to date, there has not yet been a detailed review of the use of SCADA data for the CM of WTs. 

In this paper, the use of SCADA data in this regard is covered including the potential for monitoring different 

subassemblies and the ways in which SCADA data are actually used to predict, diagnose and prognose 

failure. 

In the next section, WT reliability and failure rates of subassemblies are briefly reviewed. The next 

and main part of this paper addresses the use of SCADA data for CM. The final section discusses the 

strengths and weaknesses of the different approaches reviewed and highlights areas for future research. 

2. Failure statistics 
Several surveys of WT failures have been conducted in the last two decades to identify failure rates 

and associated downtime for different subassemblies. However, the different taxonomies used by different 

turbine manufacturers, wind farm operators and researchers make comparisons between these surveys 

challenging.  

The evaluation of 15 years of data from the German “250 MW Wind” programme [12] and >95% of 

all the turbines operating between 1997 and 2005 in Sweden [13] gave first insights into the reliability of 

the first onshore WTs. The German turbines had an average availability of about 98%. An average failure 

rate of 0.4 failures per turbine per year resulted in an average downtime of 130 hours per turbine per year 

for the Swedish turbines. A distinctive difference between failure rate and downtime distribution in 

subassembly groups was identified. The electrical and electronic control systems were identified as the most 

failure-prone, but gearbox and generator failures caused the longest downtime. 
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An evaluation of the Windstats newsletter providing statistics for turbines in Denmark and Germany 

for a similar time range revealed differences in failure rates of WTs in the two countries [14]. Higher failure 

rates for the German turbine population were traced back to the different age and the newer (but less mature) 

variable speed and pitch control technology employed in German turbines. The electrical system was the 

most failure-prone subassembly in the German turbine population, whereas the Danish population was 

mostly affected by yaw system and so-called “unclassified” failures. Records of the Chamber of Agriculture 

in Schleswig-Holstein, Germany, confirmed the failure rates for German WTs [15]. The different studies up 

to this time agreed that the gearbox had been the source of failure with the longest downtime [16]. An 

analysis of the first operating years of the UK Round 1 offshore wind farms revealed availabilities of only 

80.2%. The main causes for this relatively low availability were found to be gearbox and generator bearing 

problems [17]. 

A more recent failure survey was conducted as part of the Reliawind project [18]. In this survey, 

35,000 downtime events from 350 WTs were evaluated. The order of the subsystem failure rates was found 

to be led by the power module assembly followed by rotor module, control system, nacelle and drive train 

in descending order. The three most failure-prone subassemblies were identified as the pitch system, 

frequency converter and the yaw system. The downtime hierarchy was very similar to the failure rate order. 

This finding was in contrast to previous studies, which found that the gearbox was the greatest contributor 

to unscheduled turbine downtime. 

A report from the National Renewable Energy Laboratory (NREL) in the US [19] stated that approx. 

70% of gearbox failures were caused by bearing faults and approx. 26% by gear teeth faults based on a 

database of 289 failure events collected from 20 partners since 2009. 

Carroll et al. [20] compared failure rates in the first five years of 1822 turbines with Doubly-Fed 

Induction Generators (DFIGs) with 400 turbines using a Permanent Magnet Generator (PMG) with a fully 

rated converter. For the PMG turbines, a lower generator failure rate was found to be accompanied by a 

much higher failure rate in the converter. 

The most recent analysis of failure statistics from Carroll et al. [21] looked at data from around 350 

relatively new offshore turbines from one manufacturer recorded over a 5 year period at 5-10 wind farms. 

The failure rates were highest for the pitch/hydraulic subassembly, followed by “other components” and the 

generator, but only those failures were considered where unscheduled maintenance visits were made. 

Analysis of the failure rate by year of operation showed a decrease in the first five years. A comparison with 

onshore turbines [20] suggested higher failure rates offshore, but not as high as expected given the different 

turbine populations and environmental characteristics. Analysis of average repair times, material costs and 
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the number of required technicians indicated that blades, hub and gearbox were the most critical 

subassemblies in this context. 

  

3. Review of approaches to utilise SCADA data for CM 
This review focuses on CM approaches, which have already been applied using real data from 

operational WTs. Different methods have been developed, which are classified as (i) ‘trending’, (ii) 

‘clustering’, (iii) ‘normal behaviour modelling’ (iv) ‘damage modelling’ and (v) ‘assessment of alarms and 

expert systems’. Class (v) covers how alarm logs and modelling results can be automatically interpreted. 

The usage of SCADA data for purposes besides CM is briefly outlined in (vi) ‘other applications’.  

The parameters typically recorded by SCADA systems of geared-drive turbines are listed in Table 1. 

In general, SCADA records are 10-minute averages of 1 Hz sampled values. However, maximum, minimum 

and standard deviation are often recorded as well. The number of starts and stops and alarm logs recorded 

by the SCADA system can also be seen as part of CM [22]. Vibrations [4, 23], oil pressure level and filter 

statuses [24] could be recorded by a WT SCADA system too, but these are commonly recorded separately 

in a what might be termed a ‘dedicated’ CMS. There is no such thing as a standard set of monitoring 

equipment or measurement nomenclature for the different turbine populations seen today. Nevertheless, a 

general trend has been seen for the installation of more sensors in modern turbines. An overview of 

commercially available SCADA systems is given in [5, 25]. 
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Table 1 Basic SCADA parameters according to [4, 5, 22, 26–32].  
 

Environmental  Electrical characteristics  Part temperatures Control variables 

 
Wind speed Active power output Gearbox bearing Pitch angle 

Wind direction Power factor Gearbox lubricant oil Yaw angle 

Ambient temperature Reactive power Generator winding Rotor shaft speed 

Nacelle temperature Generator voltages Generator bearing Generator speed 

 Generator phase current Main bearing Fan speed / status 

 Voltage frequency Rotor shaft Cooling pump status 

  Generator shaft Number of yaw movements 

  Generator slip ring Set pitch angle / deviation 

  Inverter phase Number of starts / stops 

  Converter cooling water Operational status code 

  Transformer phase  

  Hub controller  

  Top controller  

  Converter controller  

  Grid busbar  

3.1. Trending 
Although WT SCADA systems have not been developed specifically for the purposes of CM, using 

SCADA data to monitor the health of turbines has been investigated as soon as optimising maintenance 

became a high priority in the wind industry. The main challenge lies in how to interpret trends given the 

variability in the operational conditions of modern WTs. A change in the value of a SCADA parameter is 

accordingly not necessarily evidence for a fault. One of simplest approaches is to collect data over a long 

period and monitor ratios of SCADA parameters and how they change over time. Past studies have involved 

trying to find early signs of degradation by using such trending approaches.  

Research in the Condition Monitoring for Offshore Wind Farms (CONMOW) project carried out from 

2002 to 2007 included SCADA CM techniques [33]. Simple trending methods e.g. using regression lines in 

scatter diagrams of temperature against power or three-dimensional visualisations including the ambient 

temperature were suggested. Manual interpretation of filtered SCADA data comparisons was seen as 

beneficial for detecting anomalies. Due to the lack of faults during the measurement campaign conducted 

on five turbines, detailed algorithms were not developed. 

Kim et al. [34] investigated a Principal Component Analysis (PCA) trending approach with an auto-

associative neural network. The structure of this network consisted of one input layer, a mapping layer, a 
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bottleneck layer, a de-mapping layer and an output layer. After training with data from normal operation, 

the network produced a set of principal components, which were evaluated using the Q-statistic (a measure 

of uncaptured variation) and the Hotelling T2  statistic (a measure of the model variation). Testing the 

approach using a known fault case from the 600kW Control Advanced Research Turbine 2 located at NREL 

proved the general ability to detect a failure thought no advance signs of the fault were detected. Testing 

using another control data set where no known faults occurred showed that false detections could occur. 

Feng et al. [24, 35] showed that if the gearbox efficiency decreases, the gearbox temperature rise 

(compared to the ambient temperature) will increase. Example gearbox oil temperature trends from a case 

study of a 2 MW variable speed turbine are shown grouped by power bin in Fig. 1. The deterioration of the 

gearbox is already visible 6 months before a catastrophic planetary gear failure. 

 
Fig. 1. Gearbox oil temperature rise by power bin during a developing failure from [24].  
Reprinted from [24], Copyright 2012 with permission of John Wiley and Sons, Ltd. 

 

 Yang et al. [4] proposed a trending method using bin averaging by wind speed, generator speed or 

output power. Two case studies with real turbines were analysed: a three-bladed turbine with a generator 

bearing failure; and a two-bladed turbine with a blade failure as shown in Fig. 2 (a) and (b), respectively. A 

CM quantifying criterion (denoted ‘c’) based on a correlation model of historic and present data was 

proposed as a way of detecting levels of damage, though the value of the criterion has a different scale 

depending on the damage mode and dependent parameter. 
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   a       b 
Fig. 2. Generator bearing fault detected through generator bearing temperature and blade deterioration detected through 
generator torque for different stages of the faults. Additionally, a calculated CM fault severity parameter ‘c’ is shown [4]. 
Reprinted from [4], Copyright (2013), with permission from Elsevier. 
a Generator bearing fault detection in filtered bearing temperature 
b Blade deterioration detection in filtered torque (calculated from generator power and rotor speed). 
 

Astolfi et al. [36] investigated trending of temperatures against the rated power over different time 

scales. Comparisons of results for a nine turbine onshore wind farm of 2 MW turbines were made. Historical 

and real time analyses helped the operator to detect problems. 

Wilkinson et al. [31] investigated different methods of using SCADA data for CM. One approach 

included a simple comparison of temperature trends of different turbines in a particular wind farm. The 

authors ultimately dismissed this approach due to inaccuracy resulting from differing environmental 

conditions or operational modes in a wind farm. 

Trending of SCADA parameters, especially drive train temperatures, can reveal the development of a 

failure using historical data. However, different studies have shown that changes in temperature are highly 

case-specific and require manual interpretation. Using a numerical description of the trend instead of visual 

interpretation of scatter diagrams did not prove to be beneficial. If trending is to be used for online 

monitoring, difficulties in the interpretation of changes and the setting of thresholds will most likely result 

in high uncertainties and possibly false alarms. 

3.2. Clustering 
Visual interpretation of trends can be problematic if a large fleet of wind turbines operating under very 

different conditions is to be monitored cost-effectively. A next step in the evolution of CM with SCADA 

data was the application of clustering algorithms to automate the classification of ‘normal’ and ‘faulty’ 

observations. 
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Kusiak and Zhang [37, 38] analysed WT vibrations using SCADA records including drive train and 

tower acceleration. Vibrations were grouped by a modified k-means clustering algorithm conditioned on the 

wind speed. Abnormal vibrations were detected by measuring the Euclidean distance between data and 

cluster centroids built in an initial training period. Limitations in determining the boundaries of clusters and 

the missing description of temporal changes were acknowledged and subsequently a normal behaviour 

modelling approach was pursued. 

Catmull [28] and Kim et al. [34] were the first to apply an artificial neural network (ANN) self-

organising map approach to SCADA data. The method builds clusters by rearranging neurons on a regular 

grid during the training process in a way that neighbouring neurons denote similar input data. A unified 

distance matrix can be used to visualise the clustering. In combination with projections of parameters, this 

enables interpretation of the clustering. Fig. 3 shows a general example of a clustering with self-organizing 

maps. Catmull used only normal operational data for training and proposed the calculation of the distance 

between new input data and the best matching neuron, called quantisation error, for abnormality detection. 

Example applications of the method using data from WTs with a sensor error, reactive power loss and an 

unidentified generator failure showed a general ability to detect failures. Kim et al. used a training data set, 

which included failures. They were then able to assign subsequent WT failures to corresponding clusters. 

Wilkinson et al. [31] pursued Catmull’s approach and presented some examples of detecting gearbox 

failures comparing the quantisation error for multiple turbines.  

 
  a    b    c 
Fig. 3. General self-organizing map example from [28] showing in particular one cluster in the upper left and one in the lower 
right corner. Reprinted with permission of [28]. Copyright 2011, RES Offshore. 
a Unified distance matrix. Higher values indicate a greater Euclidean distance between the nodes. 
b Power output component plane . 
c Wind speed component plane. 
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From the evidence reviewed, the clustering of healthy and faulty observations has not shown a clear 

advantage in terms of CM compared to trending algorithms, as the interpretation of results is again difficult. 

In addition, using fault data for training is not necessarily feasible in an industrial setting. 

3.3. Normal behaviour modelling (NBM) 
NBM uses the idea of detecting anomalies from normal operation as used in the previous methods, but 

tries to empirically model the measured parameter based on a training phase. Fig. 4 illustrates the idea of 

model-based monitoring. The residual of measured minus modelled signal acts as a clear indicator for a 

possible fault: it is assumed to be approx. 0 with a given tolerance for normal conditions and not equal to 0 

for changed conditions or failures. Two main concepts for NBM can be differentiated: Full Signal 

ReConstruction (FSRC), where only those signals, other than the target are used to predict the target, and 

AutoRegressive with eXogenous input modelling (ARX), where historic values of the target are also used.  

 
Fig. 4. Model-based monitoring with the input 𝑢𝑢(𝑡𝑡) for both the process 𝐺𝐺(𝑡𝑡) and its model 𝐺𝐺�, their outputs 𝑦𝑦(𝑡𝑡) and 𝑦𝑦�(𝑡𝑡), 
respectively, and the final error or residual 𝑒𝑒(𝑡𝑡). Sketch adapted from [39]. 
 
3.3.1. Linear and polynomial models: The simplest form NBM is based on linear or polynomial models. 

Garlick et al. [39] used a linear ARX model to detect generator bearing failures in the bearing temperature. 

A cross-correlation analysis was conducted, i.e. the sample cross-correlation was computed as an estimate 

of the covariance between the target signal and each possible input. The correlation analysis determined that 

the generator winding temperature was the best exogenous input. Different numbers of polynomial 

parameters were investigated and evaluated with the coefficient of determination and Akaike’s Information 

Criterion. 3 years of SCADA data for 12 turbines were evaluated with a three-parameter model trained with 

one day of data. Some of the detected anomalies were found to correlate with fault log reports. 

Cross and Ma [23] investigated different NBM approaches using SCADA data from 26 turbines and 

16 months of operation. Gearbox and generator winding temperatures were modelled using wind speed and 

active power in an ARX model. The coefficients of determination were only moderate for normal operation 

with 0.710 and 0.833 for the gearbox and winding temperature, respectively. No detailed study on linear 

models was conducted, as other approaches were considered as more suitable. 
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Wilkinson et al. [31] developed higher order polynomial FSRC models for NBM of drive train 

temperatures with different SCADA inputs based on correlation analysis and the physics of the system. Data 

from the same turbine, different turbines at the same site as well as different turbines at different sites were 

used. The developed algorithms were blind tested on 472 turbine years of data from five different wind 

farms. Examples of successful detection of gearbox and main bearing failures by modelling of a bearing or 

gearbox temperature with rotor speed, power output and the nacelle temperature were presented. Overall, 

24 of 36 component failures were detected with only three false alarms with accuracy highly dependent on 

the wind farm. The algorithm resulted in detection of failures from one month to two years in advance.  

Schlechtingen and Santos [40] developed a linear model based on up to 14 months of SCADA data 

from ten 2 MW offshore WTs. The linear FSRC model for the generator bearing temperature built with 

generator power output, nacelle temperature and shaft speed as inputs predicted the target temperature with 

an accuracy of ±4℃ after filtering. A catastrophic generator bearing failure of one turbine was successfully 

detected as shown in Fig. 5. The use of daily averages of the residual was demonstrated to be plausible for 

the purposes of fault detection. The first alarm limit violation was 25 days prior to the damage.  

 

 
   a       b 
Fig. 5. Regression based generator bearing temperature modelling showing a catastrophic failure [40]. If the residual of 
measurement minus modelled temperature (“error”) is higher than the threshold, damage is likely. Reprinted from [40], 
Copyright (2010) with permission from Elsevier. 
a 10 minute prediction error 
b Daily averaged prediction error 

 

3.3.2. Artificial Neural Network (ANN): ANNs are a way of determining non-linear relationships between 

observations using training data. The basic architecture for modelling contains one input layer, a variable 

number of hidden layers and one output layer. Each layer consists of different numbers of neurons, which 

are fed by all inputs or other neuron outputs from the previous layer. The basic learning of the network 

involves the changing of input weights. Each neuron consists of a nonlinear transfer function to combine the 
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inputs and an activation function deciding if output is generated. Common networks are feed-forward, i.e. 

only with links from lower to higher layers, in contrast to recurrent architectures [27, 41].  

Garcia et al. [26] developed an intelligent system for predictive maintenance called SIMAP based on 

ARX NBM with ANNs. Table 2 shows the inputs used in this work for modelling of the gearbox bearing 

temperature, the cooling oil temperature and the difference in the cooling temperature before and after the 

gearbox determined by cross-correlation and impulse response analyses. A confidence level of 95% was 

proposed resulting in lower and upper bands for the detection of anomalies by comparison with measured 

values. Garcia et al. did not provide details of the ANN configuration and training algorithm or any results 

of a detailed case study. 

 
Table 2. Inputs for ANN based modelling in SIMAP [26] Reprinted from [26],Copyright (2006) with permission from Elsevier. 
 

Model Type Inputs 

 
Gearbox bearing temperature model Multilayer perceptron Gearbox bearing temperature (t - 1, t - 2) 

  Generated power (t - 3) 

  Nacelle temperature (t) 

  Cooler fan slow run (t - 2) 

  Cooler fan fast run (t - 2) 

Gearbox thermal difference model Multilayer perceptron Gearbox thermal difference (t - 1) 

  Generated power (t - 2) 

  Nacelle temperature (t) 

  Cooler fan slow run (t - 2) 

  Cooler fan fast run (t - 2) 

Cooling oil temperature model Multilayer perceptron Cooling oil temperature (t - 1) 

  Generated power (t - 2) 

  Nacelle temperature (t) 

  Cooler fan slow run (t - 2) 

  Cooler fan fast run (t - 2) 

 
Zaher et al. [27] investigated ANN based gearbox bearing and cooling oil temperature modelling and 

demonstrated its ability using 2 years of SCADA data for 26 Bonus 0.6 MW stall-regulated turbines. An 

ANN with 3 neurons in the hidden layer was presented as the best architecture. The inputs for the two 

investigated FSRC models were based on cross-correlation and included values from previous time-steps. 

Roughly 13,000 training data points were manually chosen to represent normal behaviour. Zaher et al. were 

able to detect a gearbox fault in one turbine with the trained model. Overheating problems were detected 
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almost 6 months before the failure of one turbine. The interpretation of the highly fluctuating residual with 

several spikes was not conclusively explained, as no simple threshold would result in the depicted diagnosis. 

Brandão et al. [42, 43] applied a FSRC ANN approach to gearbox and generator fault detection in a 

Portuguese wind farm with 13 turbines with 2MW rated power and an US farm consisting of 69 turbines 

with 1.5 MW rated power. The inputs were chosen based on cross-correlation and included appropriate 

delays. It was stated that at least 6 months’ training data were needed, but details of settings were not 

provided. A fixed value of the mean absolute error was used as an alarm level, although this value was 

specific and not valid after maintenance actions.  

Schlechtingen and Santos [40] compared a linear model (as described earlier) with two different ANN 

model configurations in a study of up to 14 months’ SCADA data from ten 2 MW offshore WTs. The FSRC 

model used the generator stator temperature, nacelle temperature, power output and generator speed to 

predict the generator bearing temperature. The second model, an ARX approach, used additional historic 

values of the generator bearing temperature. A feed-forward network with one hidden layer with 5 or 6 

neurons for FSRC and ARX modelling, respectively, was trained with three months of data. Input pre-

processing was applied including: checking against the means of data ranges, checking for large changes in 

observations, normalisation of data, exclusion of records with missing data and lag removal based on cross-

correlation. The accuracy of the FSRC model was comparable with the linear approach, whereas the ARX 

model showed errors of only ±2℃ most of the time. Using daily average prediction errors was demonstrated 

to be beneficial. All models were able to detect bearing damage prior to a catastrophic failure. The alarm 

was triggered earlier in the case of the ANN models compared to the linear model. A further disadvantage 

of the linear model was seen in a strong seasonality of the prediction error. Two other investigated bearing 

damage events were detected by the ANNs about 185 days ahead with up to 5 days difference between 

FSRC and ARX models. The FSRC model allowed easier identification of the bearing failures due to larger 

shifts in the mean. Another advantage of the FSRC model was seen in the possible identification of sensor 

problems due to the monitoring of absolute changes in the reconstructed signal. Higher false alarm rates 

were expected for the FSRC model, however.  

Kusiak and Verma [44] studied bearing fault detection using four months’ SCADA data in 10 s 

resolution from 24 1.5 MW turbines. The input parameters for the FSRC model were selected firstly using 

physical understanding of the system and next by one of three data mining algorithms: wrapper with genetic 

search, wrapper with best first search and boosting tree algorithm. The differences between the five tested 

ANN configurations were in the number of neurons (5-25) and activation functions (tanh, exponential, 

identity, logistics). The best configuration consisted of 18 neurons, logistic hidden activation and identity 
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output activation. NBM was successfully demonstrated and abnormal bearing behaviour during one week 

of data for one turbine was analysed.  

Kusiak and Zhang [37, 38] modelled WT drive train and tower accelerations from SCADA data at 

10 s resolution. Two fault code situations were studied using a few days of data from six variable speed 1.5 

MW turbines. The models used for fault detection were ANN, ANN ensemble, boosting regression tree, 

support vector machine, random forest with regression, standard classification and regression tree and k-

nearest-neighbour ANN. Modelling used several time-steps of wind speed, ‘wind deviation’ (assumed to 

stand for yaw error), blade pitch angle, generator torque and previous time-steps of the target variable as 

inputs using an ARX approach. Details of the algorithm settings were not provided, but results under normal 

conditions showed that the ANN and the ANN ensemble performed best for modelling drive train and tower 

acceleration, respectively. In a second approach, the accelerations were successfully modelled with inputs 

from two different turbines (here called virtual sensor concept). Detection of two anomalies in the data set 

was demonstrated. 

Z.-Y. Zhang et al.[45] applied ARX ANN modelling to the main shaft rear bearing temperature in 

direct-drive turbines. Based on approx. one year of data from two 3 MW turbines in a 17 WT farm, a failure 

in one turbine was detected three months ahead with a model using output power, nacelle temperature and 

turbine speed as exogenous inputs. The anomaly threshold was set to 1.5°C for the residual and was validated 

with normal operation from a second turbine. 

Li et al. [46] built a monitoring system utilising an ANN for modelling component temperatures, 

power output and rotor speed based on data from 34 1.5 MW turbines. Temperatures were modelled in an 

ARX approach using current wind speed, ambient temperature and the output power as exogenous inputs. 

The authors stated that a specific model needs to be tuned to each individual turbine and is influenced by 

seasonal variations of wind speed and ambient temperature. A mean absolute error for normal conditions of 

0.67– 0.91°C was stated. Failure detection using a ‘health degree’ measure utilised penalty factors for 

residuals in the outer regions of a probability distribution. Sun et al. [32] investigated a revised system with 

additional models trained using either samples from a time period one year before or measurements on other 

turbines. Although the traditional models trained with up-to-date data of the same turbine perform best, the 

other models were beneficial in anomaly detection, where their prediction errors were weighted based on 

the accuracy under normal conditions. Two case studies highlighted the advantages of the anomaly detection 

system compared to simple residual thresholds or single-model based assessment. A further 14 fault cases 

were identified with 93.25% detection accuracy. 
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Cross and Ma’s [23] second approach to NBM used ANN. The gearbox bearing temperature, generator 

winding temperature and active power output were predicted in an ARX approach using wind speed as an 

exogenous variable. Ten neurons with a sigmoidal transfer function were applied in the hidden layer. NBM 

with ANN resulted in high coefficients of determination significantly outperforming two other investigated 

approaches, namely linear and state dependent parameter modelling. In a multivariate setting with the active 

power as a second exogenous input, the state dependent parameter modelling was more accurate, however. 

Bangalore and Tjernberg [47] applied an ANN for NBM of gearbox bearing temperatures in an ARX 

configuration. The selection of the training data was automated by using filtering and selection [48]. Self-

evolution by automatically updating the ANN after maintenance actions was suggested [49]. Anomalies 

were detected by considering residual and target distributions from the training period in a Mahalanobis 

distance. Five ANNs were built to model temperatures of five bearings in a common gearbox based on data 

from an onshore 2 MW turbine. All ANNs used power, gearbox oil temperature, nacelle temperature and 

the rotational speed as inputs as well as up to two additional temperatures of the other investigated bearings. 

The Mahalanobis distance was averaged over three days and compared with a threshold defined by training 

results. A recorded gearbox failure due to spalling in one bearing was successfully detected by the approach 

one week before the vibration-based CM system identified the failure. Comparison with root mean square 

errors emphasised the advantage of the Mahalanobis distance in detecting anomalies earlier.  

 

3.3.3. Fuzzy system: A fuzzy inference system evaluates inputs with if-then rules based on fuzzy logic, i.e. 

degrees of truth instead of Boolean logic (true/false). Membership functions define how inputs are mapped 

to a fuzzy value. If-then rules are built of two parts: the ‘if’ – the ‘antecedent’ with the evaluation of the 

input membership(s) and the ‘then’ – the ‘consequence’ applying the rule and returning a fuzzy output or an 

output as a function of the inputs (Sugeno fuzzy model) [50]. 

Schlechtingen et al. [30] proposed an Adaptive Neuro-Fuzzy Inference System (ANFIS) for NBM. 

ANFIS can be described as network-based learning of membership functions of fuzzy inference systems. 

Three years of SCADA data from 18 onshore 2 MW turbines were used as the basis of this research. Two 

rules with generalised normal distribution membership functions were applied for each input. Depending on 

the target variable and its physical properties, reconstruction with signals of a different sensor type or of the 

same type (cross prediction, e.g. temperature of another phase of the generator) were chosen. The resulting 

45 models are visualised in Fig. 6. Hybrid gradient descent and least squares estimation learning was used 

for training. A comparison with ANN modelling similar to the approach described above by the same authors 

[40] showed that the prediction accuracy in terms of the standard deviation of the error was comparable. 
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ANFIS required less time for training, however. For failure diagnosis, the prediction errors were averaged 

to daily values and compared with a probability limit of 0.01%. An alarm was raised when at least three 

daily values violated the threshold within a week. Successful detection of a hydraulic oil leakage, gearbox 

oil temperature increases, converter fan malfunctions, an anemometer offset and a controller malfunction 

were demonstrated [51]. 

 

 
Fig. 6 Fuzzy modelling, input and outputs from [30]. Reprinted from [30], Copyright (2013) with permission from Elsevier. 

 

3.3.4. Other methodologies: Wang and Infield [52] proposed a non-parametric, non-linear state 

estimation technique (NSET) for NBM using SCADA data. This approach was based on an estimation of 

the target value by using a state memory matrix of inputs. The NSET algorithm uses a product of the memory 

matrix and a weighting vector to estimate each new operational state. The weighting vector was determined 

using a least squares approach for minimising the residuals of estimated and measured output utilising a 

Euclidean distance operator. The input variables considered for building the state memory matrix were 
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chosen using physical understanding of the system and correlation analysis. A data selection algorithm was 

applied to reduce the number of states for each variable. Welchs’s t-test, as a distance measure for samples 

with different variances, or a one-sided hypothesis test was used for anomaly detection. 

In a case study, Wang and Infield investigated gearbox failures using 3 month of SCADA data from 

10 turbines. Data from different turbines were used for training (7 turbines), validation (1 turbine) and testing 

data (2 turbines with failures). The target gearbox cooling oil temperature was modelled with the gearbox 

bearing temperature, the power output, the nacelle temperature and the oil temperature itself. Using this 

approach, alarms were reported almost a month before the final gearbox failures. A comparison with a four-

input four-output ANN approach similar to [26, 27] demonstrated better performance for the NSET. Guo 

[53] investigated NSET to model a generator bearing temperature, but did not actually apply the approach 

to failure detection. 

Butler et al. [54] presented modelling based on sparse Bayesian learning of a configuration equivalent 

to ARX to predict the main bearing temperature. The model was defined as a weighted sum of radial basis 

functions. A threshold based on the residual distribution was used to detect fault conditions. The authors 

presented an estimation of remaining useful life with Particle Filtering (or Sequential Monte Carlo) methods. 

Cross and Ma [23] applied, as a third approach, a quasi-linear State Dependent Parameter (SDP) model 

for NBM. The coefficients of determination were high for normal operations, i.e. 0.983 and 0.997 for the 

gearbox temperature and generator winding temperature, respectively. A three-dimensional surface built 

using the prediction model acted as an adaptive threshold for failure detection with fuzzy rules. 

3.3.5. Discussion: Multiple studies have proven that NBM can be used to detect failures. Although the 

concept of evaluating a residual of measured minus modelled signal provides a failure indicator which is 

easy to interpret, the dependency on training data and manually set thresholds can result in undetected 

changes or frequent false alarms. The usage of a confidence factor based on training duration and accuracy 

as suggested in [31] might help to improve anomaly detection and assessment. Different NBM concepts as 

ARX and FSRC, different techniques based on linear models, ANN, ANFIS etc. and different anomaly 

detections as simple thresholds, Mahalanobis distance or health degree approaches have been tested, but 

sufficiently comprehensive comparisons are needed to evaluate which solution is best. Additionally, there 

is a need for a universal strategy to select inputs for NBM.  

3.4. Damage modelling 
The NBM approaches described above tend to be ‘black-box’ based with little or no insight into the 

physical processes which drive failure. Instead of comparing measured signals with empirical models of 
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normal behaviour, interpreting measured signals using physical models can potentially better represent 

damage development and give more accurate results.  

Gray and Watson [55] presented a Physics of Failure approach for damage calculation and failure 

probability estimation, i.e. developing a damage model based on a physical understanding of the particular 

failure mode of interest. For failure modes, which manifest themselves through accumulated damage, such 

as fatigue, the probability of an imminent breakdown can be estimated. The approach was applied in a field 

study using two years of SCADA data from a wind farm consisting of 160 fixed-speed 1 MW turbines in 

order to study gearbox failures. A Lundgren-Palmgren damage model for gearbox bearings was proposed 

and linear damage accumulation assumed. Constants were calibrated by comparison of the assumed design 

lifetime and the actual lifetime of the failed bearings. An assessment of the resulting damage in the full 

turbine distribution for the wind farm revealed that the failed turbines show higher damage values than 75% 

of the population, see Fig. 7. The widely distributed values showed that it would be difficult to accurately 

predict which turbines were about to fail, but nonetheless could be used to help prioritise maintenance 

actions within a large fleet of turbines. The approach was also applied to yaw failures for the same wind 

farm [29]. 

 
Fig. 7. Calculated bearing damage for 160 turbines from [55]. Box plot with extrema, quartiles and diamond symbols for failed 
turbines. Reprinted from [55], Copyright 2009 with permission of John Wiley and Sons, Ltd. 

 

Breteler et al. [56] generated a general framework for a Physics of Failure approach as illustrated in 

Fig. 8. An additional load generator module was proposed to consider external factors. A gearbox failure in 

a helical gear due to bending fatigue of a gear tooth was investigated in a case study. Laser measurements 

of the misalignments were used to calculate loads using a finite element method calculation. Number of 

cycles and forces were calculated from averaged ten minute SCADA power output and generator speed 

measurements. The resulting remaining lifetime showed large differences not only between reference state 

and failure, but also between three different turbines.  

Qiu et al. [57, 58] built a theoretical model for a turbine with gearbox and a DFIG based on 

thermodynamic principles and combined it with temperature trending approaches. Steady-state rotor 

aerodynamics was combined with simplified rigid drivetrain dynamics and an electromagnetic torque 
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formula. In a case study of a 1.5 MW turbine, a gearbox gear teeth failure, a generator ventilation fault and 

generator winding unbalance were examined. SCADA data trends were used to validate the simulated 

degradation as shown in Fig. 9. Diagnostic rules were determined for the investigated faults based on the 

power transmission efficiency and generator winding or lubricant temperature gradients.  

Borchersen and Kinnaert [59] developed a mathematical model for three generator coil temperatures. 

The model for the switching generator cooling and heating system was built without knowledge of the actual 

system. Parameters were found by applying an extended Kalman filter. The anomaly detection utilised 

residuals of model parameters for the different coils with a cumulative sum algorithm. In a case study with 

3 years of SCADA data from 43 offshore turbines, 16 out of 18 cooling faults were successfully detected 

with only one false alarm.  

Comparing measured signals with physical turbine or damage models has been successfully applied 

to fault detection, although challenges to get sufficient detection accuracy remain. Due to a lack of studies 

with sufficiently large numbers of failures, different failure modes or different turbines, the potential for 

using damage modelling in CM is not yet fully established. 
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Fig. 8. Flowchart of Physics of Failure approach from [56].  
Redrawn with permission of [56] Copyright 2015, MECAL IX. 
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   a       b 
Fig. 9. DFIG degradation simulation in comparison with case study result from [58] Reprinted from [58], Copyright 2014, The 
IET. 
a Ventilation fault. 
b Voltage unbalance. 

 

3.5. Assessment of alarms and expert systems 
Different systems have been proposed in order to better interpret outputs from SCADA control alarms 

or NBM results.  

3.4.1. Status code processing: Qiu et al. [60] developed two approaches to reduce SCADA alarms based 

on up to two years of data from two different wind farms with more than 400 turbines in total and two 

different manufacturers. The different types of alarms were classified as general, system operation, 

environmental and communication/connection/software alarms. The average alarm rate was about 10-20 per 

ten-minute interval, but high maximum rates of up to 1500 alarms per ten minutes occurred. Remotely 

resetting was possible for only about 24% of the alarms (considering only one turbine type). An alarm time-

sequence analysis was used to identifying cases where one alarm triggered another. In a second approach, 

probabilities were analysed using Bayes’ theorem and probabilistic patterns were compared using a Venn 

diagram. An example probability analysis is given in Fig. 10. Although the time-sequence analysis was 

found to be useful when few data were available, root causes were better identified with the probability 

based analysis.  
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Fig. 10. Probability based Venn diagram analysis of pitch malfunction from [60]. The different circles represent alarms, 
intersections denote simultaneously occurring alarms. Here, the alarm 387 seems to be the origin of all other alarms. Reprinted 
from [60], Copyright (2011) with permission from John Wiley and Sons, Ltd. 

 

Chen et al. [61] utilised a binary ANN to map from alarm pattern to faults. A hidden layer size of 50 

neurons was found to be optimal in the prediction of a pitch fault. The training data included 221 alarm 

patterns of 31 SCADA alarms from one turbine with an electrical pitch system. Tests using alarms from four 

other turbines showed a detection accuracy of only 8-47%. The training data dependency of this approach 

was highlighted and possible extrapolation errors discussed. 

Chen et al. [62] continued the probabilistic approach [60] and proposed a Bayesian network to find 

root causes. Good reasoning capabilities were demonstrated with the same data. An example is given in Fig. 

11. 
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   a       b 
Fig. 11. Examples of Bayesian network reasoning from [62]. Reprinted with permission of [62]. Copyright 2012, Durham 
University. 
a With pitch fault. 
b Without pitch fault. 

 

Godwin and Matthews [22] post-processed SCADA status codes for the purpose of pitch fault 

detection. The expert system developed based on logical rules learned using a RIPPER algorithm was able 

to concentrate the amount of information.  

Kusiak and Li [63] predicted status codes, their severity and specific code types (in this case, a 

malfunction of the diverter) by mapping codes to wind speed and power output. Training and testing data 

were taken from three months of SCADA data with five-minute resolution from four turbines. Neural 

Network Ensemble, Standard Classification, Regression Tree and Boosting Tree Algorithm Difference 

methods were found to extract the required information best. Faults were predicted 60 minutes ahead. 

Chen et al. [64] utilised an a priori knowledge-based ANFIS to detect pitch faults. Based on six fault 

cases from two turbines, a knowledge base was built by finding relationships between rotor speed, blade 

angle, pitch motor torque and power output. This knowledge was included in the ANFIS structure to 

supplement modelling in cases of insufficient training data. Testing with maintenance records of 28 months 

from 26 turbines in a Spanish farm demonstrated the advantage of this approach compared to simple alarm 

counting. For a 21 days’ prognostic horizon, the model detected 62.2% of the cases that required 

maintenance. Tests using data from a US wind farm with 160 fixed speed 1 MW turbines resulted in less 

accurate fault prognosis, however [65]. Unclear maintenance reports, missing torque signals and 

curtailments due to low grid demands were seen as causes. 
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The evaluation of status codes for CM has been proven to be beneficial for better alarm assessment. 

However, the lack of any details concerning algorithms used in recent commercial products and the 

differences in status code generation of different software manufacturers hinders any clear assessment of 

the progress achieved in this field. 

3.4.2. Using expert systems to interpret alarms or modelling results: Garcia et al. [26] applied an expert 

system to assess the output of their ANN modelling. Manually implemented fuzzy rules were used to 

diagnose causes of anomalies. The evolution of health was proposed to be used as a method for the prediction 

of remaining lifetime. Planning of maintenance as well as evaluation of its effectiveness and cost were also 

discussed. Failure history needed to be available for proper training of the system. 

Cross and Ma [23] applied fuzzy inference to their temperature modelling. Trapezoidal and triangular 

membership functions based on fixed values for the residual size and duration were used to generate a three-

stage status output. 

Schlechtingen et al. [30] proposed an expert system to process their ANFIS modelling results. 

Prediction errors were passed to a fuzzy inference system only if three anomalies were detected by the daily 

probability threshold during one week. Triangular membership functions defined by occurrence 

probabilities and manual definitions in a master threshold table were used. Manually implemented fuzzy 

rules generated three stage condition statements as well as potential root causes, as shown in Fig. 12. 

 

 
Fig. 12. Example of fuzzy expert system output from [51] giving component status as green (ok), yellow (warning) and red 
(alarm) and possible root cause. Reprinted from [51], Copyright (2014) with permission from Elsevier. 

 

H. Li et al. [66] proposed a fuzzy assessment system, which was tested on a 850 kW variable speed 

turbine. A deterioration degree was defined using polynomial functions up to third order of the wind speed 

for setting normal limits of temperatures. Trapezoidal and triangular membership functions were used with 

weights for different temperatures to build a fuzzy synthetic assessment system with linguistic results from 

“excellent” to “danger”. A case study was presented including normal operation, a gearbox fault and a stop 

due to a high generator winding temperature.  
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J. Li et al. [46] and Sun et al. [32] used a similar framework of fuzzy synthetic evaluation to assess 

the results from several ANN models for different targets or based on different training data. Nine different 

faults were used for the allocation of the abnormal level indices to fuzzy memberships. The implementation 

of weights considered the share of each ANN model in the ‘health degree’ [46] and/or the prediction 

accuracy under normal conditions of the ANN models [32]. 

De Andrade Viera and Sanz-Bobi [67] proposed a risk indicator concept based on their ANN 

modelling [26]. Residuals of modelling were integrated over time, if the residual was outside a confidence 

band. Results of different ANN models were combined in a weighted sum based on quality of models. A 

cost-effective maintenance model was proposed adapted to the ongoing observed life with a variable 

threshold depending on a risk indicator growth rate. 

Gray et al. [68] suggested abductive diagnosis to link SCADA errors or modelling results with expert 

knowledge. Assessed failure modes, their location, operational mode and resulting indicator changes were 

used to create a so-called Propositional Horn Clause Abduction Problem which is able to provide fault 

diagnoses using a computational process. 

The usage of expert systems clearly simplifies the interpretation of NBM results. Health degrees or 

risk indicators can play an important role in integrating SCADA CM approaches in maintenance strategies.  

3.6. Other applications 
Other applications of SCADA data beside classical CM include: power curve analyses, modelling and 

monitoring, e.g. with k-nearest-neighbour [69], copula estimation [70], k-nearest-neighbour, cluster centre 

fuzzy logic, ANN and ANFIS [71], ANN and Gaussian processes [72], linear and Weibull profiles 

definitions [73] or with stochastic methods [74]. Further references can be found in dedicated power curve 

modelling reviews, e.g. [75]. Spare part demand forecasting was investigated with a proportional hazards 

model utilising counts of temperature threshold violations from SCADA data [76]. More general load and 

structural health monitoring can also employ SCADA data as an additional source of information, e.g. [74, 

77, 78]. 
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4. Discussion and conclusion 
Different approaches to utilise SCADA data for CM of WTs are reviewed in this paper grouped as (i) 

trending, (ii) clustering, (iii) NBM, (v) damage modelling and (vi) assessment of alarms and expert systems. 

The simple trending of SCADA data has demonstrated good abilities to detect anomalies. Case specific 

configuration and interpretation seem to be required, however. Automated monitoring based on trending 

will most likely struggle to be accurate enough and avoid false alarms. 

 Clustering, as a more advanced technique of finding the differences between normal operation and 

anomaly, has the same disadvantage. Additionally, extensive historical failure data are required, if the 

methods are able to reliably diagnose failures. It is unlikely that the full range of fault stages will be available 

in any training data period in practice. 

NBM has been the focus of recent research using SCADA data for CM due to the advantage of 

relatively easy anomaly detection using the residual of modelled minus measured variables after training 

under normal conditions. Models based on polynomial equations, ANN, ANFIS or NSET demonstrated 

good failure detection abilities. However, comprehensive comparisons of the techniques are lacking in order 

to be able to assess which technique is best. From the different studies, it is hard to assess whether a good 

accuracy and fault detection is based on a certain technique, on the NBM concept being ARX or FSRC, or 

even on further detailed settings. However, it is not satisfactorily shown that the (computational) effort of 

machine learning techniques like ANN, ANFIS or NSET is reasonable as only one case study compares 

linear modelling with ANN [40]. On the other hand, most publications criticising ANN training as too time-

consuming do not consider the ongoing improvements in computational resources in common desktop 

computers. There is lack of published NBM performance metrics for different case studies in order to be 

able to properly evaluate required effort and performance in terms of normal behaviour prediction, true 

failure detections and false alarms for all of the techniques.  

The damage modelling approaches show potential for CM of WTs focussing on physical causes of 

failures. However, the development of reliable and accurate damage models for all failure modes of a WT 

will be a very difficult task. As only a few studies have been published in this area, the feasibility of using 

such models for online monitoring of different turbines, possibly from different manufacturers and in 

different locations, cannot be assessed yet. 

Status code processing with probabilistic approaches or physical rules shows promise to condense a 

large number of alarms into helpful information. However, the studies reviewed do not discuss recent 

industrial developments, which might have already solved problems discussed. Expert systems with fuzzy 

inference can be used to automate interpretation of modelling results and deliver easy to understand outputs. 
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Complete asset monitoring and maintenance planning will require assessment of monitoring alarms and 

decision making as supported by such systems. 

This review focuses on techniques which have been already applied to real SCADA data. Table 3 

gives a summary of the reviewed SCADA CM approaches with respect to WT type described by rated power, 

the amount of data expressed in WT years, the number of investigated failures or anomalies and the 

subassembly or part of interest. It can be seen, that nearly all research has been based on relatively old WT 

technology with WTs in the range 1-2MW. The majority of the case studies reviewed based their results on 

a relatively small amount of data, with less than 30 WT years of SCADA data. Only four case studies were 

based on more than 10 failures. Most of the approaches focused on detecting failures in gearboxes or 

bearings.  

Based on the presented review of recent CM approaches with SCADA data, future research should 

initially address the following: 

• comparing the prediction accuracy of different approaches as many publications have claimed 

to have the best solution for SCADA CM, but do not comprehensively compare them with 

other techniques; 

• validating approaches on modern multi-MW WTs, because all studies up to date have used 

relatively old turbines 

• testing approaches using data from a range of different wind farms and turbine types as most 

studies have only considered one farm or one WT manufacturer 

For future studies, emphasis should be put on providing sufficient metrics, true and false failure 

detection rates, advance detection times and computational effort to allow better comparison between 

SCADA analysis techniques. In terms of data-driven training, the demonstration of a few successful failure 

detections alone is not sufficient as the practical use is determined by the reliability of the approach, i.e. in 

particular the detection rate and false alarms for new data. 

 Further potential is seen in future research concerning: 

1) NBM: 

• comparing ARX and FSRC concepts independent of modelling technique 

• finding sufficient training length and universal input selection algorithm 

• validating ANN training and updating algorithm [48] on bigger scale and for other techniques 

• evaluating NSET with more data 

• testing of linear, ANN or NSET modelling for multiple targets beside temperatures as done 

with ANFIS [30] 
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• comparing different anomaly detection techniques such as using a Mahalanobis distance [47], 

a health degree based on probability [32, 46], multiple alarms over a given period[30], etc., 

independent of modelling technique 

• investigating “black-box” information from models: do the model parameters provide helpful 

information? 

2) Damage modelling: 

• testing and validating damage models with different turbines 

• investigating possible merging of Physics of Failure models with “black box” NBM 

• developing new damage models for turbine components not yet studied 

• using high resolution SCADA data for damage modelling to provide higher damage 

accumulation accuracy 

3) Assessment of alarms and status codes: 

• applying status code processing approaches to subassemblies besides the pitch system 

• investigating current state-of-the art in industrial SCADA processing systems 

 



28 
 

Table 3. Summary of different SCADA CM approaches and WT type investigated, data used, number of anomalies and subassembly of interest. Only approaches in 
the focus of a paper and with at least one investigated failure from real data are listed. 
 

Category First approach Second approach Third approach Fourth approach Fifth approach 

Trending  
[24]  1

:   
[36]  3

:   
[4]  2

:  
 

 

  

 

Clustering  
[28]  3

:   
[34]  1

:    
 

 
   

 

NBM:  Linear and 

polynomial 
[39]  3

:   
[31]  36

:   
 

 
   

 
ANN: FSRC [43]  8

:   
[40]  5

:   
[44]  5

:  
[45] 1

:  

  

ANN: ARX [27]  3
:  

[40]  5
:  

[38]  1
:  

[46] 

[32] 
 25

:  
[47]  1

:  

ANFIS / 

NSET 
[51]  31

:  
[52]  2

:  
 

 
 

   

 

Damage modelling [55] 

[29] 
 10

:    
[56]  3

:   
[58]  3

:   
[59]  18

:  

  

 

Status code 

processing 
[60] 

 :  

[61] 

[62]  :  
[63] 

 :  

[64] 

[65] &  :    

Legend:  
WT type:  

 : undefined    : < 1.5 MW:   : 1.5-2.5 MW  (exception: * 3.0 MW) 

Amount of data:  : undefined  : ≤ 3 WT years  : ≤ 30 WT years  : ≤ 300 WT years  : ≥ 300 WT years 

The superscript depicts the investigated number of failures or anomalies. 
Failing part / subassembly:  : Gearbox  : Pitch or yaw system  : Generator     : Bearing   : Other 

 

* 
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ABSTRACT 

Condition monitoring of wind turbines with only operational data has received more attention in the last decade due 

to the advantage of freely available data without extra equipment needed. Although the operational data recorded 

by the Supervisory Control And Data Acquisition (SCADA) system are intended for performance monitoring and 

typically stored only every 10 minutes, information on the turbine’s health can be extracted. A major focus is here 

on the temperature signals of mechanical parts such as drivetrain bearings. Despite the fact that absolute 

temperatures rise very late in the case of a failure, the temperature behaviour might change well in advance. Model-

based monitoring is a tool to detect these small changes in the temperature signal affected by varying load and 

operation. Data-driven models are trained in a period where the turbine can be assumed to be healthy and represent 

the normal operation thereafter. Degradation and imminent failures can be detected by analysing the residual of 

modelled and measured temperatures. However, detecting failures in the residual is not always straightforward due 

to possibly unrepresentative training data and limited capabilities of this approach. A different way of using 

SCADA data lies in the estimation of damage accumulation with performance parameters based on the Physics of 

Failure methodology. A combination of model-based monitoring with damage calculation based on a Physics of 

Failure approach is proposed to strengthen the failure detection capabilities. The monitoring performance is 

evaluated in a case study with SCADA data from a wind farm. 
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1. INTRODUCTION 

With the exponential growth of wind energy in the last decades, the demand for optimised asset management of 

wind turbines has slowly evolved. In the early days of wind energy, scheduled and corrective maintenance were the 

appropriate measures for easy-to-access onshore farms and small turbines. With the move offshore and turbine 

capacities in the multi-MW category in recent years, the more complicated accessibility and significant financial 

losses for any downtime demand an optimised maintenance strategy. Condition-based or predictive maintenance as 

a proven strategy in other industries, promises to increase the efficiency of maintenance by optimising the point of 

intervention based on the condition of the system and risks of imminent failures.  

Condition-based maintenance requires adequate measurements and monitoring techniques to reveal the health of 

the turbine and probabilities of upcoming failures. Due to the complexity of a wind turbine, a single measurement 

cannot cover the monitoring of all possible structural, mechanical and electrical failures. Failure analyses showed 

that the gearbox and generator are the most critical subassemblies in terms of failure rate and the corresponding 

downtime [1,2]. Accordingly, research and industry have focused on condition monitoring of the underlying 

mechanical failure mechanisms in wind turbine drive trains, although structural health monitoring of the blades, 

tower and foundation and detection of faults in the power converter, pitch and yaw systems have also been 

investigated. Potential measurements were found as vibration, acoustic emission, strain, torque, temperatures or oil 

parameters combined with signal processing techniques such as filtering, synchronous sampling, Hilbert transform, 

Wavelet transform, Fast Fourier Transform and many others [3,4]. 
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More recently, the use of the operational data recorded by the Supervisory Control And Data Acquisition (SCADA) 

system has been investigated due the availability of such data without additional sensor installations. While these 

data are mainly intended for monitoring the performance of turbines in terms of power production, availability, 

possible misalignment and similar, several different applications to condition monitoring have been identified. 

Alarm logs in SCADA data might be analysed to find the root causes of events [5,6]. However, the most promising 

information for drive train condition monitoring lies in the temperature signals as mechanical degradation shows in 

increased thermal losses [7]. Drive train temperatures in wind turbines fluctuate with changing wind speed, 

rotational speed and loading. Accordingly, absolute temperature thresholds are known to give late alarms in 

contrast to vibration-based condition monitoring systems [3]. To overcome this drawback, model-based monitoring 

can reveal hidden trends in the temperature time series. Due to the complexity of wind turbine systems, data-driven 

learning is preferred to analytical building of models. Inputs for modelling drive train temperatures might be other 

temperatures, control signals as the power output or rotational speed or even the history of the target in a partly 

autoregressive approach. Modelling of the temperatures has been investigated with simple linear sums of inputs [8], 

artificial neural networks (ANNs) [9,10], adaptive neuro-fuzzy inference systems [11] or state estimation 

techniques [12]. A previous comparative study of the authors showed that most of the (non-autoregressive) 

techniques result in similar accurate prediction with slight advantages of ANNs [13]. 

In contrast to the model-based monitoring investigating temperature signals, the Physics of Failure approach tries 

to analyse the operational statistics derived from SCADA data in order to estimate the damage accumulation. In a 

case study with a big farm, it has been demonstrated that turbines with gearbox problems might be identified by 

their operational statistics [14]. 

In this paper, a combination of model-based monitoring with statistical analyses as used in the Physics of Failure 

approach is discussed and tested in a case study with data from an onshore wind farm. 

2. MONITORING WIND TURBINE DRIVE TRAINS WITH OPERATIONAL DATA 

The SCADA system in wind turbines usually measures multiple parameters with a sampling frequency of 1 Hz. 

Due to the fact that these measurements are originally intended for long-time performance monitoring, usually only 

averages and possibly extrema and standard deviations of ten minutes are recorded. The number and selection of 

measured signals depends on the turbine manufacturer or SCADA system provider, but wind speed and direction, 

pitch and yaw angles, rotational speed, power output and ambient temperature are always monitored. Additionally, 

temperatures of parts in the drive train are often measured – although with different levels of detail, e.g. only a 

generator and a gearbox temperature in one setup or more than twenty temperatures at different locations at the 

shaft in a more detailed configuration. The numerical SCADA data are supplemented by the alarm log listing all 

fault events happening during the operation. 

2.1. Normal behaviour modelling of SCADA temperatures 

Model-based monitoring [8–13] tries to identify anomalies in a system by comparing measured parameters with 

outputs of a model of the system. This kind of monitoring is able to highlight slight changes in measured signals 

affected by complex interaction of loading and heat transfers as in the wind turbine drive train. The model needs to 

predict the fluctuations of the temperature accurately enough to allow the residual of measured and modelled 

temperature to act as an indicator for possible degradation and imminent failure, as sketched in Figure 1. 
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Figure 1.Sketch of model-based monitoring and indication of anomalies in the residual. 

Although the basic heat generation in the drivetrain can be traced back to mechanical losses proportional to the 

acting wind and the rotational speed, the system is affected by more complex interaction of sub-systems, the 

ambient temperature and cumulative effects which make analytical modelling difficult. In contrast, data-driven 

modelling requires only a representative training period to learn the relationship. During this training phase the 

system needs to be in normal condition to enable detecting anomalies thereafter based on the difference to this 

behaviour. ANNs are a tool to learn and represent non-linear relationships inspired by the human brain. A common 

feedforward ANN trained by Levenberg-Marquardt backpropagation consists of one input layer, one or more 

hidden layers with a specified number of neurons and the output layer. Each neuron sums the weighted outputs of 

the previous layers and uses a non-linear activation function, typically a hyperbolic tangent, to generate an output. 

For the application of modelling a drivetrain temperature, a single linear output is used. 

The inputs for modelling can be chosen based on the understanding of the system (also called domain knowledge) 

or based on the properties of the signals, e.g. the correlation of signals. Although using partly autoregressive 

modelling might increase the accuracy of prediction, this will not necessary improve the anomaly detection 

capability as the prediction is influenced by the target signal and could adapt to changes in the behaviour. 

Wind turbine drivetrains usually consist of main bearings, main shaft, a gearbox build of a planetary and two 

parallel stages, the generator shaft and generator and multiple bearings. All possible target temperatures have to be 

monitored as behavioural changes might not only show up in the nearest sensor, but also in other signals.  

Any significant maintenance or replacement will alter the behaviour of the system. Accordingly, normal behaviour 

models need to be re-trained after such events. 

The model-based monitoring of drivetrain temperatures aims to detect slow degradation due to mechanical wear in 

bearings and gears. Early identification of these problems will enable the operator to optimise the maintenance 

scheduling and prevent long downtimes. However, challenges in representative training and limited detection 

capabilities result in significant uncertainties of this monitoring approach. 

2.2. Physics of Failure 

The Physics of Failure approach [14] aims to estimate damage accumulation based on a simplified physical model 

and operational statistics derived from SCADA data. Maintenance is to be targeted based on probabilities of 

failures. The basis of a Physics of Failure approach is a system analysis which includes a detailed system 

definition, potential failure modes with their causes and damage driving operating conditions. A damage 

accumulation model has to be built for each of the identified potential failure modes. Gray and Watson [14] 

gathered failure root causes of wind turbine gearboxes and derived several performance parameters from SCADA 

data to identify failure modes in a case study. The farm-wide comparison of the parameters such as average wind 

speed, rated power hours, brake application count, yaw movement, low speed and high power and rated speed 

hours, rotor starts and power dynamic, indicated that the failing turbines were affected by ‘high cycle fatigue due to 

poor contact between roller and raceway occurring at conditions of high stationary power’ [14]. A bearing damage 

model based on Lundberg-Palmgren’s bearing life formulae and linear Palmgren-Miner damage accumulation was 

proposed and applied using the SCADA signals power and rotational speed to approximate the bearing load. The 

damage model was only calibrated with the observed failures, but the resulting damage values of the failing 
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turbines were clearly higher than the 75% percentile of the farm. However, in terms of indicating problems in 

certain turbines, the farm-wide comparison of the rated power hours gave similarly helpful information. 

Accordingly, evaluating performance parameters can be prioritised over developing full damage models. 

3. CASE STUDY 

In this study, data from 12 turbines in an onshore UK wind farm with a capacity of approx. 1-3 MW are analysed. 

The SCADA records are available from a period of 2.5 years and consist of signals in 10 minute resolution as listed 

in    Table 1, available as averages (mean) and partly maximums (max), minimums (min) and 

standard deviations (std). No detailed specification of sensor types or locations is available. The temperature 

signals are numbered, but lack a descriptive labelling. 

   Table 1: Case study SCADA signals 

Parameter Signal 

Wind speed Mean, max, min, std 

Wind, nacelle and relative direction Mean 

Pitch angle Mean 

Generator speed Mean, max, min, std 

Electrical power Mean, max, min, std 

Power factor, frequency Mean 

Voltage and current per phase Mean 

16 temperatures Mean 

Active time for line, turbine, wind, 

ambient temperature, yaw motion 

Seconds of 600 

The investigated turbines were affected by several drivetrain subassembly or part replacements, which are gathered 

from a commented stoppage list as the only maintenance documentation. Five gearbox replacements, three 

generator replacements and six bearing replacements took place. Sufficient details to describe the failure are only 

given for one gearbox replacement, where gear teeth broke on the intermediate speed stage gear. Only three of the 

investigated turbines did not undergo any major replacement. 

Due to the missing temperature labels in this case study, the different failing parts cannot be targeted directly by 

normal behaviour modelling. Instead, all temperature signals are analysed and possibly helpful targets identified. 

Pre-processing is applied in terms of a validity check and removal of a complete sample if invalid values are found. 

ANN models with 20 neurons in one hidden layer are trained with data representing 3 months. Five inputs are 

automatically selected on the basis of the strongest correlation in the training phase. Re-training of models after 

major replacements or obvious system modifications is implemented. Residuals are filtered for steps > 5°C in the 

target, model prediction or residual. To reduce the fluctuations, residuals are smoothed by calculating the median of 

each 288 samples (two days). Warnings are generated based on a threshold representing 2% exceeding probability 

derived from a fitted Gaussian distribution to the residual from the training period. Alarms are raised only if more 

than 3 of possibly 10 warnings occur in a moving window. 

As a first step of the Physics of Failure approach, performance parameters are defined as given in Table 2. Due to 

the distribution of replacements in time, analysing statistics of the whole data as done in [14] would not be helpful. 

In contrast, the parameters are calculated for each month accumulating all data up to this date. Adequate 

normalisation is chosen to enable comparing of parameters from different data size. It has to be noted that the small 

number of turbines in this case study impedes any statistical analysis. 
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Table 2: Definition of performance parameters for failure analysis. All parameters (except TUS) are calculated for operation only by 

requiring power mean > 10%. 

Parameter Definition Normalisation / scaling 

Wind speed (WS) Average of wind speed mean 1.0 to 1.5 rated wind speed 

Turbulence (TU) Average of wind speed std 0 to 1.5 rated wind speed * 10 

Turbulence in standstill (TUS) Average of wind speed std (power < 10%) 0 to rated wind speed * 10 

Rated power (RP) Count if power mean > 90% Ratio: divide by sample size 

High wind speed (HW) Count if wind speed max > rated wind speed Ratio: divide by sample size 

Power factor inverse (PF) 1 – average of power factor mean *100 

Power dynamic (PD) Average of power std 0 to rated power * 10 

High rotational speed (HS) Count if generator speed mean > 90% Ratio: divide by sample size 

4. RESULTS 

4.1. Model-based monitoring 

Two temperatures are identified to relate to gearbox failures. The advance detection of problems is demonstrated in 

Figure 2 and 3. Gearbox problems are detected 39, 66, 75, 78 and possibly 492 days in advance for the five gearbox 

replacements, respectively. However, if the approach is applied to all turbines, a significant number of alarms is 

issued without known gearbox problems, see Figure 4. The alarms might be false or indicate other unreported 

problems. If the generator failures are to be detected, using another temperature shows good indication for the two 

replacements in the same turbine. However, the number of alarms in other turbines without generator replacement 

is high, see Figure 5. The alarm distribution over time indicates here a seasonal pattern visible in most turbines. 

Additionally, it seems possible, that some alarms might indicate gearbox problems. No clear alarm pattern is found 

in any of the temperatures for the bearing replacements. 

 

Figure 2. Detection of a gearbox problem with the time axis referring to the replacement date (temperature A, turbine 12). 
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Figure 3. Detection of a gearbox problem with the time axis referring to the replacement date (temperature B, turbine 2). 

 

Figure 4. Alarms for gearbox problems in all turbines based on temperature B. Unrelated alarms are marked red, gearbox 

replacements with a circle, generator and bearing replacements with a square and asterisk, respectively. 

 

 

Figure 5. Alarms for generator problems in all turbines based on temperature C. Unrelated alarms are marked red, generator 

replacements with a square, gearbox and bearing replacements with a circle and asterisk, respectively. 
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4.2. Operational statistics 

The analysis of the defined performance parameters showed that the whole farm is affected by changing operation 

during the whole 2.5 years of data as the parameter values from all turbines clearly vary with time. As there is no 

common pattern, it is most likely that the reported replacements of gearboxes, generators and bearings have diverse 

causes and failure modes. Examples are given in Figure 6 and 8 for selected dates with highlighted replacements 

happening in this month. The generator problem in turbine 4, Figure 6a, seems to be related to relative high wind 

speed and accordingly rated power operation and high speed. Noticeably, the reactive power generation was 

exceptionally high in this time in several turbines including the failing one (average power factor of 0.9947). The 

bearing replacements, Figure 6b and Figure 7a, are found with various parameter values. Although most of the 

replacements show low or average parameter values, some are linked to high turbulence in operation. A high 

turbulence could also be the driver of the two gearbox replacements in Figure 7b. 

  

         (a)            (b) 

Figure 6. Performance parameters for all turbines in July year 1 (a) and December year 2 (b). Generator and bearing replacements 

marked with square and diamond, respectively. The extrema of the parameters from all months are marked with a plus symbol. 

  

         (a)            (b) 

Figure 7. Performance parameters for all turbines in April year 3 (a) and July year 3 (b). Bearing and gearbox replacements marked 

with diamond and circle, respectively. The extrema of the parameters from all months are marked with a plus symbol. 

5. CONCLUSION 

Operational data from wind turbines could build an alternative and complement of dedicated vibration 

measurements. Model-based monitoring is a way to detect anomalies in the behaviour of wind turbine drive train 

temperature signals to detect mechanical degradation and possible failures. In contrast, the statistical analysis used 
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in the Physics of Failure approach tries to identify turbines at risk by evaluating the damage drivers with 

performance parameters. A combination of the two approaches is proposed to increase the reliability of monitoring. 

In a case study, both approaches are applied with the aim of finding early indications for several gearbox, generator 

and generator bearing replacements. In the model-based monitoring with ANNs and thresholds based on the 

residual distribution from training, early alarms for all gearbox replacements are issued. Similarly, generator 

problems in one turbine show up if using another temperature signal. However, many unrelated or possibly false 

alarms in turbines without reported problems of this type reveal challenges in getting reliable monitoring. The 

evaluation of the performance parameters results in the conclusion that different damage drivers and failure modes 

were involved. Particular high values in turbulence, reactive power generation and wind speed are found to 

correlate with some of the failed turbines. Although the properties of the case study limit the capabilities of both 

approaches, it can be seen that the combination of model-based monitoring and statistical analysis of SCADA data 

increases the knowledge of the system’s condition. 

In future works, the performance parameter values of this farm shall be compared to farms with similar settings. 

However, a thorough evaluation of the benefit of combining the two monitoring approaches will need better case 

data with a bigger farm size, more fault-free turbines and sufficient documentation. 
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Abstract—This paper describes a wind turbine (WT) condition
monitoring technique that uses the measurement of stator current
and rotational speed to derive a fault detection signal. The
detection algorithm uses a Kalman filter (KF) to extract and track
the strength of particular frequency components, characteristic
of faults in the stator current signal. This has been done by
an extensive simulation studies to develop an on-line detection
and monitoring of mechanical faults in permanent magnet
synchronous generators (PMSGs), recentlly used in modern
variable-speed WTs. The model is developed and validated with
operational data of five 2.5MW turbines were recorded by the
supervisory control and data acquisition (SCADA) system over
the period of 1 year. The simulation results show that the KF
algorithm can provide a reliable indication of the presence of
a fault with low computational times, from director indirect-
drive fixed- or variable-speed WTs. The proposed algorithm
can indicate the severity of the fault, where in contrast with
traditional methods, they failed to extract the fault features
from non-stationary current measurements, due to variable-speed
operating conditions of WTs.

Index Terms—Wind turbine, Generator, Condition monitoring,
Current Signature, Fault signature, Fault detection, Diagnosis.

I. INTRODUCTION

Wind energy has been one of the fastest growing power
sources in the world over the last two decades. The worldwide
wind capacity reached 392.927 GW by the end of June 2015,
out of which 21.678 GW were added in the first six months
of 2015 [1]. The cost of operations and maintenance (OM)
has been shown to be anything between 15% and 35% of the
cost of energy from wind [2], and there is a great demand to
reduce OM cost. The goal can be reached by detecting and
identifying the fault of WTs in early stage which gives the
operator sufficient time to make more informed maintenance
decision. Traditionally, WTs condition monitoring method
is supervised using vibration analysis but measuring such
mechanical quantities is often expensive. Indeed, vibration
sensors such as piezoelectric accelerometers and associated
load amplifier are often expensive. Moreover, the ability of a
clear detection of mechanical faults by vibration measurements
potentially depends in the sensor locations [3]. For example,
accelerometers need to be mounted near to each possible faulty
component of the WT. The technique is also not ideally suited
to all WT types and faults [4]. It has been reported in a
recent reliability survey [5] that WT electrical components
have a higher failure rate than the mechanical components.
As the measurement of stator currents are already available

for control purposes which means no additional sensors or
data acquisition devices are needed [6], so the detection based
on the measurement of stator currents would be beneficial
and could be more comprehensive, simpler, and cheaper than
other techniques. However, there are challenges in using
current measurements for WT condition monitoring and fault
detection. First, it is a challenge to extract WT fault signatures
from non-stationary current measurements, due to variable-
speed operating conditions of WTs [7]. Moreover, the useful
information in current measurements for WT usually has a low
signal to noise ratio, and thus very difficult to extract without
a dedicated signal processing [8].

Generally, the majority of WT condition monitoring and
fault diagnosis techniques have employed the Fourier Trans-
form (FT) to detect a fault from the stator current [9]. The
limitations of the direct application of the Fourier transform
methods, and their inability to localize a signal in both the
time and frequency domains, was realized very early on in
the development of radar and sonar detection. Thus, a number
of more advanced time-frequency analysis techniques were
developed in recent years in order to extract fault signatures
from the monitored signal. Among these newly developed
methods, the short time Fourier transform (STFT) also known
as windowed Fourier transform which has been widely used
to compute the spectrogram from time signal which shows the
spectral density of a signal varying with time [10]. Although
the STFT can be used for analyzing transient signals using a
time-frequency representation, it fails to give detailed infor-
mation of the fault level because the STFT can only analyze
the signal with a fixed sized window for all frequencies,
which leads to poor frequency resolution. Wavelet transform is
another well-known method for feature extraction in the area
of fault detection and diagnosis [11]. Unlike the STFT with a
fixed window function, the wavelet transform involves a varied
time-frequency window and can provide good localization
property in both the time and frequency domain, but it suffers
from inevitable issues of low resolution, interference terms,
border distortion, and energy leakage [12].

The KF algorithm is a relatively new method for time-
frequency analysis that is able to track the instantaneous am-
plitude and frequency of nonlinear and non-stationary signals
[13]. Unlike, short-time Fourier transform and wavelet trans-
form, the KF is based on an adaptive algorithm and does not
use any windowing technique. Therefore, no prior knowledge



of the signal is required to implement the KF. Consequently,
the trade-off between time and frequency resolutions is less
controversial and can be used for real-time frequency tracking.
Recently, the KF has been found to be powerful and successful
in condition monitoring of permanent magnet synchronous
machines operating under various speed and load conditions
[14], and in detection of half- as well as full broken single rotor
bar fault of a squirrel-cage induction machine under various
loading conditions and speeds using stator current data [15].

This paper is a continuation of the preliminary investigation
into the protection of PMSG-based WTs presented in [7]. The
current work investigates the application of the KF to detect
mechanical failures in WTs using generator stator current
signals. Successful utilization of stator currents represents a
cost-effective, non-intrusive condition monitoring and fault di-
agnosis technique for retrofitting existing condition monitoring
methods for WTs. To verify the effectiveness of the proposed
algorithm, a WT simulation model is developed and validated
with operational data of five 2.5MW turbines were recorded by
the SCADA system over the period of 1 year. The simulation
results demonstrate that the proposed method is effective in
detecting mechanical faults in a variable speed machine.

II. KALMAN FILTER FOR FAULT DETECTION AND
TRACKING

A system whose physical process can be mathematically
modelled as it changes or evolves over time is known as a
dynamical system. In making inference for such a system,
two models are usually considered, a state model and a mea-
surement model. The problem of fault detection and tracking
using electrical signals from a WT can be related to dynamical
systems. This is so due to the fact that the operating state of
a WT changes or evolves over time depending on whether the
machine is operating at below the rated wind speed or above
the rated, whether a fault occurs or not, whether the fault is
transient or permanent and so on. The two dynamical system
models mentioned above are used with the KF and applied to
our problem.

The Kalman filter (KF) can be thought of as a sequential
minimum mean square error (MMSE) estimator of a given
signal (for example, electrical signals from a WT that is
embedded in noise, where the signal is characterized by a
state model [16]. The state and measurement models used in
our problem are described next.

A. State Model

The state model is otherwise known as the state evolution
model. In our problem, it describes the motion model of a
given frequency profile, i.e. how the amplitude of a frequency
changes from an observation time k to next k + 1.

xk = Fxk−1 + vk (1)

where xk denote a normal state with dimension dx1 and
xk = [f,A]T , where f and A denote frequency and amplitude
respectively. k = 1,2,... is the time instant of the discrete
model. F is a dxd matrix that define the linear function and is

known as state transition matrix. vk is a dx1 zero mean and
an independent and identically distributed (i.i.d.) process noise
vector with a dxd covariance matrix Qk.

B. Measurement Model

The measurement model maps the normal state from the
state space onto the observation space. In our problem, it is
given as:

zk = Hxk + nk (2)

where zk denote the measurement received at time k, H is a
matrix that define the transformation function and is known
as the transformation matrix. nk is a zero mean and an i.i.d.
measurement noise vector with covariance matrix Ck.

In order to implement the KF in our fault detection and
tracking problem, we assume that both the state and measure-
ment models are linear and Gaussian as evident from (1) and
(2). Following this assumption, we formulate the KF algorithm
for our problem thus:

xk|k−1 = Fxk−1|k−1 (3)

Mk|k−1 = Qk + FMk−1|k−1FT (4)
xk|k = xk|k−1 + Kk(−εk) (5)

xk−1|k−1 = xk (6)
Mk|k = Mk|k−1 − KkHMk|k−1 (7)

where

εk = xk − zk (8)

Pk = HMk|k−1HT + Ck (9)

Kk = Mk|k−1HT P−1k (10)

where zk is the signal from the WT, and xk is the expected
normal state. εk denote the measurement innovation and Pk

is covariance of the innovation term εk, with Kk being the
Kalman gain. For a matrix B, BT is its transpose. Equations
(3) and (4) are the KF prediction equations and (5) and (7)
are the update equations.

Notice in (5) that the Kalman gain, Kk is multiplied by
the negative of the innovation term, εk. This is because in
our approach, we are interested in detecting whether a given
normal state, xk = [f,A]T changes due to fault by tracking xk.
When a fault occurs, it will be captured by the KF algorithm
and both the fault frequency, f and amplitude, A as well as
the time k of the fault can be observed. The Implementation of
the KF algorithm for fault detection and tracking is discussed
next.

C. Implementation

At time k, observed time series electrical signals obtained
from the WT are converted to the frequency domain through
Fourier transform. Various known and expected fault frequen-
cies are selected along with their acceptable normal operating
amplitudes to form the normal state vector, xnk = [fn, An]

T ,



where n = 1, · · · , N and N is the number of frequency-
amplitude pair selected for monitoring. N banks of KF al-
gorithms using (3) to (7) are deployed to perform the fault
detection and tracking.

The fault detection and tracking for the n-th frequency-
amplitude pair is captured in xnk|k of eqn. (5). A 2D plot of the
amplitude, An of the n-th frequency-amplitude pair against
time, (i.e. k) from the tracked normal state, xn

k|k can easily
be used to visualize the fault profile of the n-th frequency-
amplitude pair having frequency, fn. A rise in amplitude from
the normal state indicates the occurrence of a fault (of which
the fault frequency, amplitude and time of occurrence are
contained in xnk|k). If this fault is transient, the observed rise
will eventually fall and if the fault is permanent or fixed, the
rise will remain constant or increase further depending on the
severity of the fault.

III. SIMULATION

In order to verify the performance of the fault detection
and tracking algorithm, a general model for representation of
variable speed WTs was implemented in MATLAB/Simulink,
including wind speed, rotor, pitch control system, drivetrain
and generator model [7]. The model has been developed to
facilitate the investigation of condition monitoring and effec-
tive algorithm development for fault detection. The measured
wind speed data recorded by 2.5MW WT SCADA system has
been used as model input to validate the response of the WT
model. Figure 1 shows the response of the model to measured
generator speed. It is clear the model is in good agreement
with the measured data.
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Fig. 1: Example of model validation considering generator
speed.

Rotor eccentricity in a variable speed WT with a permanent
magnet synchronous generator (PMSG) is used as an illustra-
tive example to investigate the use of the KF algorithm with
the aim of developing knowledge based fault detection method
for performing online fault detection in variable speed WTs.
During rotor eccentricity, certain sideband harmonics around
the fundamental frequency in the machine current signal occur
and their amplitude increases proportionally with the fault
level. It was experimentally proven [6] that rotor eccentricity
faults actually give rise to a sequence of such sidebands given
by:

fc =

(
1± 2kp − 1

p

)
.ff (11)

Where fc and ff are the rotor fault and fundamental
frequency components, respectively, kp is an integer (kp=1,
2, 3, ...) and p is the number of pole pairs. In order to observe
the excitation of sideband harmonics, known as fault signature
frequencies, due to the fault, the model was run at constant
sub-synchronous, synchronous and super-synchronous speeds,
respectively. Figure 2 shows the stator current spectra for the
faulty machine operating at three operational points under
faulty rotor conditions. One can notice components with fre-
quencies at 60 Hz and 40 Hz, which are intentionally simulated
to be present in the spectra as a dynamic eccentricity. Other
spectral components given by the Equation (11) are generated
by the fault. However, it is clear that the fault signature
frequencies are not consistent across the results. This is mainly
because the fundamental frequency in PMSGs is proportional
to the rotational speed so that the fault signature frequencies
are shifted respect to the rotational speed value, which means
that the current signals acquired from the generator terminals
of the WTs are always non-stationary.
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Fig. 2: Stator current spectra for the healthy PMSG at three
operational points.

Generally, WTs based PMSGs operate in variable-speed
conditions owing to varying wind speeds. As a consequence,
the fault signature frequencies are buried in wide-band dom-
inant frequency components (i.e. harmonics due to variable
rotational speeds) of the current signal that are irrelevant to
the fault as shown in Figure 3. To solve this problem, the Kf



algorithm is employed to track the magnitude of the lower
fault signature frequency (LFSF) and upper fault signature
frequency (UFSF),given by the Equation (11), over time form
the non-stationary generator current signal.
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Fig. 3: Stator current spectra for the faulty PMSG at variable
speed.

IV. FAULT FEATURE EXTRACTION

A novel algorithm is developed to employ the KF for
extracting the fault features among other wide-band dominant
frequency components of the current signal that are irrelevant
to the fault due to variable rotational speeds. To solve this
problem, a non-stationary current signal which recorded for
300 seconds is firstly splitted into 2 second intervals leading
to 150 data sets. The data sets are transformed to frequency
domain using the Fast Fourier Transform (FFT) algorithm.
The period of two seconds is chosen as the shortest possi-
ble interval with a sufficient resolution frequency domain to
capture all frequency components of interest. Secondly, the
fault-related features are then extracted from the FFT spectrum
of the converted stationary current signal to reconstruct a new
signal for quantitative health condition evaluation of the WT.
After completing the previous steps, the 150 data sets have
been applied to the KF algorithm at variable speeds at different
fault conditions as follow:
• Permanent fault with a fixed level during the entire time

simulation,
• Transient fault during the time period from 50sec to 100

sec,
• Variable fault level increasing linearly and proportionally

with time simulation,
A process is developed to extract the maximum magnitude

of particular frequency among fault signature frequencies for
each data set. Then the magnitude of the frequencies of interest
has been tracked over time as shown in Figure 5. By doing
so, it is possible to create simple graphs tracking the fault
signature frequencies over time as shown in Figure 5. The
results can be visually inspected to verify the presence of the
fault in question as well as to identify its severity. The KF
algorithm innovatively explores the impacts of faults on stator
current signatures, in the sense of variations in time domain
over frequency ranges, rather than the changes at a specific
frequency or several specific frequencies. The proposed algo-
rithm is especially useful for cases where no specific frequency
components are available in the measured signals, or when
the characteristic frequencies are non-stationary, and thus not
directly observable.
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Fig. 4: Extracting the magnitude of the fault signature frequen-
cies over time at different fault conditions.
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(a) Permanent fault with a fixed level
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Fig. 5: Tracking the fault signature frequencies over time at
different fault conditions.

V. CONCLUSION

The KF-based algorithm is capable of detecting mechanical
faults based on time-frequency analysis by tracking the in-
stantaneous amplitude and frequency from the current signal.
It can be directly applied to the nonlinear and non-stationary
signals, without prepossessing to convert the characteristics
frequencies to corresponding constant values. It overcomes
the drawbacks of traditional frequency-based fault detection
techniques that particular characteristic frequencies related to
the faults should be pre-acquired.
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1 Abstract 
Condition monitoring and early failure detection are needed to reduce operational 
costs of wind turbines, particularly for offshore farms where accessibility is restricted. 
Failure detection technologies should be simple and reliable in order to contribute to 
the overall aim of cost reduction. Operational data from the Supervisory Control And 
Data Acquisition (SCADA) system are a potential source of information for condition 
monitoring and have the advantage of being recorded at each turbine without the costs 
of additional sensors. Detection of drivetrain failures using these ten-minute data has 
been successfully demonstrated in the last five years. This paper summarises and 
evaluates different ways of so-called normal behaviour modelling of temperature using 
SCADA data, i.e. the prediction of a measured temperature under the assumption that 
the system is behaving normally. After training, the residual of modelled and measured 
temperature acts as an indicator for possible wear and failures. Multiple approaches 
are discussed: linear modelling, artificial neural networks in auto-regressive, feed-
forward and layer recurrent configurations, adaptive neuro-fuzzy inference systems 
and state estimation techniques. A case study with real data reveals differences of ap-
proaches, sensitivity to training data and settings of algorithms. Early failure detection 
of a gearbox failure is demonstrated, although challenges in achieving reliable monitor-
ing without many false alarms become apparent. 

2 Introduction 
Although wind energy costs have been dramatically decreased in the last decade, 
maintenance costs still contribute with up to 40 EUR/MWh for offshore farms [MIL14]. 
Traditional corrective maintenance strategies cannot be used for current projects in 
remote or offshore locations where limited accessibility would result in extended down-
times. Additionally, the financial losses per downtime are more critical nowadays due 
to dramatically increased turbine sizes and associated higher energy production. The 
advanced maintenance strategy of condition-based or predictive maintenance requires 
health statuses for all critical parts. Temperatures recorded by the Supervisory Control 
And Data Acquisition (SCADA) system are a cost-effective way to monitor the drive 
train health as these are commonly available for performance monitoring. In contrast, 
‘dedicated’ condition monitoring systems, which are mainly based on vibration monitor-
ing, are installed as an ‘add-on’ and may cost 11,000 EUR per turbine [YAN13]. Alt-
hough SCADA data are usually sampled as low resolution 10 minute averages, slow 
wear related degradation can be tracked by finding changes in the temperature behav-
iour – i.e. how the temperature reacts in the transient interaction of turbine loading, 
cooling systems, heat convection and the environment. In contrast to monitoring of 
high absolute temperatures which commonly occur only shortly before a fault, the 
slight changes in the temperature behaviour can develop well in advance. First ap-
proaches investigated trends by visually comparing drive train temperatures as a scat-
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ter plot against the relative power [WIG08, FEN13] or building clusters of presumed 
healthy and faulty samples [KIM11, WIL14]. These attempts proved that analysis of 
SCADA data might help to detect imminent failures, but highly manual interpretation 
was required. For effective clustering of the condition, training data including faults has 
to be available, which is not feasible in practice. Recent research has focused on data-
driven normal behaviour modelling (NBM), where temperatures are modelled using the 
history of the signal and / or information from other sensors while assuming normal 
behaviour, i.e. a healthy turbine [WIL14, SCH13, SUN16]. Further research has e.g. 
investigated more physical damage modelling or assessment of SCADA alarms. An 
overview of condition monitoring with SCADA data can be found in a recent review of 
the authors [TAU16a]. This paper focuses on different approaches of NBM of drive 
train temperature and ways to detect imminent failures. In a case study, data from a 
real wind farm are used to briefly demonstrate the functionality and assess the quality 
of modelling and monitoring. 

3 Main section 
NBM can be described as modelling a signal with information from the environment 
and from the process itself as sketched in Figure 1. In the case of the wind turbine 
considered as a process, the environment might consist of e.g. ambient temperature, 
wind speed etc. and process variables like turbine power output, rotational speed or 
temperatures acting as additional inputs. The model uses the information from the in-
puts to predict the target temperature by learning the relationship during a training 
phase. Different methodologies for modelling are discussed in chapter 3.1. After train-
ing, the residual of measured and modelled signal is expected to be approx. 0 for 
healthy conditions and different from 0 for faulty conditions. Several techniques to de-
tect anomalies in the residual are discussed in chapter 3.2. 

Process

Model

Measured signal

Modelled signal

Residual

Environment

 

Figure 1: Sketch of NBM principle [TAU16b] 

3.1 NBM modelling techniques 
The different NBM modelling techniques can be assigned to two main approaches. If 
historic values of the target are used beside other inputs, the model can be termed 
auto-regressive with exogenous input (ARX). On the other hand,, full signal reconstruc-
tion (FSRC) avoids using the history of the target signal. The most promising FSRC 
modelling approaches derived from an earlier case study [TAU16b] are compared with 
three different ARX approaches. 
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3.1.1 FSRC – non-auto-regressive 

FSRC is tested by using the two strongest signals from a cross-correlation analysis as 
inputs to predict a target temperature. Findings from a previous case study indicated 
that using more or lagged inputs does not necessarily improve the accuracy signifi-
cantly [TAU16b]. 

One of the simplest ways of modelling the target temperature is building a weighted 
sum of the inputs. Although the assumption of linearity may not be true for drive train 
temperatures, successful failure detection based on linear NBM has been demonstrat-
ed [SCH10]. In this work, linear modelling with interactions (LINI) is tested, allowing 
linear terms, an intercept and products of the input pairs as inputs conducted with a 
least squares fit solver. 

Artificial Neural Networks (ANN) can be applied to various non-linear problems. For 
NBM of drive train temperatures, feed-forward networks (ANN-FF) have been widely 
applied, e.g. [SCH10]. A network with one hidden layer of six neurons is trained with 
Levenberg-Marquard backpropagation. A layer recurrent architecture (ANN-LR) with a 
delay of two time-steps is investigated to consider the inertia of the system. 

Adaptive Neuro-Fuzzy Inference System (ANFIS) as a combination of fuzzy inference 
and neural network learning has been demonstrated for failure detection [SCH13]. A 
setup with two Gaussian membership functions per input in combination with a linear 
output function is trained with a hybrid least squares and backpropagation algorithm. 

3.1.2 ARX – auto-regressive 

ARX modelling is investigated by using the same two exogenous inputs and historical 
values of the target temperature. Linear and ANN ARX modelling is supported by the 
last 20 time-steps of the target temperature. 

Non-linear State Estimation Technique (NSET) as proposed by [WAN12] is also inves-
tigated with a memory matrix of training states and an estimation of the target via a 
weight matrix determined by the minimal Euclidean distance of observation and state 
matrix. NSET can be considered as similar to ARX, because the current observation is 
used to build the estimate. The number of states in the memory matrix is reduced with 
a selection algorithm [WAN12]; here an allowed distance to the grid of 𝛿𝛿 = 0.00015 is 
used. 

3.2 Prediction performance metrics and anomaly detection tech-
niques 

The accuracy of predicting a temperature signal can be described by statistical metrics 
related to the residual, i.e.: the mean absolute error (MAE), standard deviation of abso-
lute error, the root mean squared error, mean absolute percentage error or the coeffi-
cient of determination 𝑅𝑅2. 
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Different techniques to detect anomalies in the residual have been proposed for NBM 
of drive train temperatures. Obviously, a fixed threshold for the residual based on train-
ing experience (i.e. the residual distribution) is an easy way of detecting higher tem-
peratures than expected. Averaging the residual for one day has been proven to be 
beneficial to increase certainty in results [SCH10, SCH13]. An exponentially weighted 
moving average control chart was proposed to account for cumulating effects 
[WAN16]. A Mahalanobis distance was suggested considering the training distribution 
and built for residual and target [BAN15]. A daily ‘abnormal level index’ was introduced 
with penalties for residuals based on their assignment to defined zones in the training 
distribution [SUN16]. Raising an alarm if several alarms in a week occurred has proved 
to be an efficient way to reduce false alarms [SCH13]. 

Table 1 gives the details of the investigated anomaly detection techniques in this work. 

Technique Details Warning Alarm 
Raw residual (RAW)  >  𝑋𝑋 % of a Normal 

distribution fitted to 
training residual 

≥ 288 ten 
minute 
warnings in 
past 7 days 

Daily residual 
[SCH10] (DAILY) average of 144 samples 

Mahalanobis dis-
tance [BAN15] 
(MAHAL) 

distance is a function of 
residual and target refer-
encing to training residual 
and target 

>  𝑋𝑋 % of a Weibull 
distribution fitted to 
training distance 

Exponentially 
weighted moving 
average control 
chart [WAN16] 
(EWMA) 

past observations 
weighting with 𝜆𝜆 = 0.2 

< 𝜇𝜇 − 𝑋𝑋𝑋𝑋 or 
> 𝜇𝜇 + 𝑋𝑋𝑋𝑋 with 
𝜇𝜇: mean, 𝑋𝑋: stand-
ard deviation of the 
training residual 

Abnormal level in-
dex [SUN16] (ALI) 

penalty= �
5, if > 97.5%
3, if > 75%

1, else
 

of Normal distribution fitted 
to the training residual 

fuzzy warning be-
tween 0 and 1 

moving av-
erage of 
last 7 days’ 
warnings 

 

Table 1: Configuration of anomaly detection techniques (the warning threshold 𝑋𝑋 is cali-
brated, cp. chapter 3.3.2 and Table 2)  

3.3 Case study for gearbox monitoring 
Data from a Scottish wind farm with 12 turbines with a rated power of 2-3 MW are ana-
lysed. The maintenance records indicate 4 turbines with a gearbox exchange in the 
investigated 2.5 years of available data. Due to missing maintenance reports, the rea-
sons for the exchanges are unclear. It is assumed that the gearboxes failed and, in 
general, gearbox bearing failures are the most likely cause. The SCADA data are pre-
processed by filtering of non-operational times and checking for valid sensor ranges. 
NBM with 5 months of training is applied to detect gearbox failures in a drivetrain tem-
perature. 
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3.3.1 Normal behaviour prediction performance 

The prediction performance of the different modelling approaches is visualised in Fig-
ure 2 for all turbines in the farm which are not affected by gearbox exchanges. The 
results indicate that NSET outperforms all other approaches. ANNFF, ANNLR and 
ANFIS perform with similar accuracy. Using historic values in an ARX setup does not 
prove to be truly beneficial for ANN modelling. Linear ARX modelling results in poor 
performance and is excluded subsequently. 

 

Figure 2: Median of monthly performance for turbines without gearbox exchange 

3.3.2 Calibration of anomaly detection thresholds 

The warning thresholds for the anomaly detection techniques are calibrated with mod-
elling results of one turbine without gearbox exchange. In a simple optimisation the 
thresholds are decreased in steps of 0.05 as long as no alarms are issued. The result-
ing thresholds are summarised in Table 2. The parameters for the ALI calculation are 
not calibrated due to the higher complexity of this technique. 

 LINI ANNFF ANNLR ANFIS ANNARX NSET 
RAW (%) 95.25 98.45 97.50 98.10 99.45 65.95 
DAILY (%) 93.75 97.55 98.50 97.20 98.90 72.20 
MAHAL(%) 87.85 93.35 95.40 92.15 97.35 85.90 
EWMA (-) 3.00 3.70 3.75 3.55 4.35 0.70 

 

Table 2: Calibrated warning threshold 𝑋𝑋 for different techniques (cp. Table 1) 

3.3.3 Gearbox failure 

Evaluation of the maintenance records indicate a gearbox failure and finally exchange 
in turbine A. From the daily residuals shown in Figure 3 it is difficult to visually identify 
the change in the behaviour before the failure. The sinusoidal variation of the residual 
indicates that the training has not learned this effect probably caused by seasonal 
temperature changes. 
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Application of the calibrated anomaly detection techniques resulted in the alarm pat-
terns given in Figure 4. All alarms which are close to the end of the time axis can be 
considered as valid alarms for the gearbox degradation. Using LINI modelling, the ear-
liest alarms which are not interrupted for more than two weeks until the end are raised 
approx. 25 days before failure for RAW, DAILY, MAHAL and EWMA anomaly detec-
tion. ANNFF modelling results in an early alarm 30 days before failure for RAW, 
MAHAL and EWMA and even 35 days in advance for DAILY. Similar results are ob-
tained for ANNLR with 34, 23, 29 and 30 days for RAW, DAILY, MAHAL and EWMA, 
respectively. ANFIS modelling gives an early alarm (24 days) only for RAW anomaly 
detection (DAILY: no, MAHAL: 4, EWMA: 7 days). Failure detection with ANNARX and 
NSET and the discussed anomaly detection techniques does not work at all. LINI 
modelling and MAHAL anomaly detection are affected by alarms long before the fault, 
which could also indicate the gearbox degradation, but might be false alarms. The 
fuzzy alarm generated by the ALI technique shows an upward trend for all modelling 
techniques except NSET. However, it has to be noted that ALI levels of a similar mag-
nitude occurred in the turbine used for calibration. 

 

Figure 3: Residual of modelled and measured temperature before a gearbox failure 
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Figure 4: Alarms of different NBM modelling techniques and ways of anomaly detec-
tion 

3.3.4 Validation with remaining turbines in farm 

Application of the modelling and anomaly detection techniques on the other three tur-
bines undergoing a gearbox exchange resulted in less clear and probably many false 
alarms. However, ANNFF and ANNLR modelling generated the best compromise of 
possible early alarms and minimal possible false alarms in two of three cases. 

Testing the algorithms on the remaining turbines without noted gearbox exchanges 
revealed that the calibration did not work properly as high alarm levels occurred. 

4 Conclusion 
Different modelling techniques and anomaly detection techniques have been dis-
cussed and compared with the aim of condition monitoring of wind turbine drive trains. 

The application of NBM algorithms in a case study shows that temperature prediction 
with a mean error of approx. 1° C is feasible with two model inputs for all investigated 
modelling techniques except linear ARX. Indeed, NSET performs with a prediction er-
ror approx. ten times smaller. 

Using the residual of measured and modelled temperature for fault detection is not as 
straightforward as might be assumed. The calibration of the thresholds of the different 
anomaly detection techniques with one turbine in the farm did not result in reliable fault 
detection for all turbines. This might be due to various reasons including the unac-
counted seasonal effect, suboptimal configuration of modelling techniques and anoma-
ly detection algorithms or even incomplete maintenance records and poor data quality. 
However, the successful detection of a gearbox failure in one turbine up to 35 days in 
advance shows promise for LINI, ANNFF, ANNLR and ANFIS modelling, in particular 
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using RAW and DAILY anomaly detection. The poor failure detection performance us-
ing ARX modelling techniques including NSET indicate, that although the target tem-
perature is accurately predicted, the model parameters are adapting to new behaviour 
associated with incipient failure so no change in residual behaviour is observed. The 
ALI fuzzy alarm generation has not been implemented in a comparable manner to the 
other detection techniques, but the challenges of finding only true alarms have been 
visible here as well. 

Further research needs to address the seasonal effect, optimal input selection, suitable 
calibration of anomaly thresholds, dedicated anomaly detection techniques for ARX 
techniques and additional ways to achieve reliable failure detection. 
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Abstract—Wind turbine manufacturers have introduced to
the market a variety of innovative concepts and configurations
for generators to maximize energy capture, reduce costs and
improve reliability of wind energy. For the purpose of improving
reliability and availability, a number of diagnostic methods have
been developed. Stator current signature analysis (SCSA) is
potentially an effective technique to diagnose faults in electrical
machines, and could be used to detect and diagnose faults in wind
turbines. In this study, an investigation was conducted into the
application of SCSA to detect stator inter-turn faults in an excited
synchronous generator and a permanent magnet synchronous
generator. It was found from simulation results that, owing to
disruption of magnetic field symmetry and imbalance between
the current flowing in the shorted turn and the corresponding
diametrically opposite turn in the winding, certain harmonic
components in the stator current clearly increased as the number
of shorted turns increased. The findings are helpful to detect
faults involving only a few turns without ambiguity, in spite of
the difference in the configuration of the generators. As expected,
because of the different type, configuration and operational
condition of the two generators studied, detecting faults through
the generator current signature requires a particular approach
for each generator type.

Index Terms—Wind turbine, Generator, Condition monitoring,
Current Signature, Fault signature, Fault detection, Diagnosis.

I. INTRODUCTION

Over the years, there has been much work to maximize
energy capture, reduce costs and improve reliability of wind
turbines [1]. With this work has come investment and the
development of new technologies from wind turbine (WT)
manufacturers. Among these technologies are the doubly fed
induction generator (DFIG) with a three- stage gearbox which
is the most common configuration at present, sharing the
market with excited synchronous generators (EESGs) and
the new arrivals, based on permanent magnet synchronous
generators (PMSGs). Better design is of course one answer
to increase the reliability and availability of WTs; the other
is condition monitoring of the WT systems [2]. This allows
for early detection of faults in wind turbines, allowing proac-
tive decision making, minimizing downtime, and potentially
forecasting the remaining useful life of ae component given a
diagnosed fault.

A number of methods for WT condition monitoring have
been proposed by researchers including the analysis of: vi-
bration, oil quality, temperature, torque, acoustic emissions,
fibre optics, and electrical output. However, each technique

requires additional and expensive sensors or specialized tools.
Moreover, there is a price to pay to access each WT in order
to install the sensors, as well as lost revenue due to power
outages associated with equipment installation and mainte-
nance. Although SCSA is one of the preferred techniques
to diagnose faults in electrical machines, it is not widely
used by WT manufacturers. Many generator faults are bearing
related and the lack of uptake could be because the physical
link between rolling elements faults and fault signatures in
electrical signals is not clearly identified. Also, it could be due
to the difficulty in extracting fault signatures from the electrical
signal which depends on the generator type, configuration and
the operational condition. This paper considers two generator
systems commonly used in WTs. Two models are implemented
in MATLAB and simulated under a turn-to-turn short circuit
fault as case studies to detect faults through the generator
current signature. The first model represents a 2.0 MW WT
with a PMSG (DeWind D9.1) and the second model represents
a 2.0 MW WT with an EESG (DeWind D9.2). Both machine
models are used to demonstrate fault detection capability
for different generator configurations. The models allow for
certain nonlinear and time-varying characteristics and take into
account varying wind speeds similar to those experienced in
WTs.

II. GENERATOR CONFIGURATIONS IN WIND
ENERGY CONVERSION SYSTEMS

Wind energy conversion configurations can be classified into
fixed speed and variable speed. In the early 1990s, most of the
installed WTs were designed using a squirrel cage induction
generator running close to fixed speed and directly connected
to the grid [3], meaning that whatever the wind speed would
be, the rotational turbine speed is fixed and determined by the
frequency of the supply grid, the gear ratio and the generator
design. During the past few years, the variable-speed WT has
become the dominant type among the installed WTs based on
DFIGs, sharing the market with EESGs and the new arrivals,
based on PMSGs. In this section, the essential properties of the
PMSG and EESG are briefly described. For a detailed analysis
of generator types, the reader is referred to the standard
literature in this field [4].



A. Electrically-Excited Synchronous Generator

The EESG is the predominant generator in the electrical
power industry [5]. The stator windings of EESGs are directly
connected to the grid and, the rotor winding is supplied with
DC currents that create the rotor magnetomotive force and the
rotor flux so that the EESG does not need any further reactive
power compensation system unlike an induction generator. In
normal operating conditions, the rotor revolves synchronously
with the stator field. The synchronous rotation of the rotor is
the reason for this type to be called synchronous generators.
The speed of the synchronous generator is determined by the
frequency of the rotating field and by the number of pole
pairs of the rotor. Figure1 shows a schematic of an EESG
machine such as the DeWind D9.2 having a 93m rotor which
drives a fixed speed EESG with a rated power of 2.0 MW.
Due to its ability to generate at up to 13.8 kV, the generator
can be directly connected to the grid through a synchronizing
switch without the need of a power converter or a main
power transformer. The fixed generator speed is achieved by
converting the variable rotational speed from the WT rotor to
a constant input speed by using a two stage helical /planetary
gearbox and a variable speed Voith WinDrive hydrodynamic
superimposed planetary gearbox. The heart of the WinDrive
technology is a variable-speed hydrodynamic gearbox, and
two main components of the WinDrive are the technique
behind how it functions including a planetary gear combined
and a hydrodynamic torque converter [6]. The planetary gear
is designed as a superposition gear. It has the advantage
that it does not need a power converter or a main power
transformer. But the price to be paid for such a large, heavy
and reliable gearbox design that has to provide the requirement
for significant damping in the drive train.
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Fig. 1: Wind turbine system with EESG

B. Permanent Magnet Synchronous Generator

Instead of excitation windings, the rotor of a synchronous
generator can have permanent magnets built into the rotor
magnetic circuit. In this case, the rotor does not have any
windings. PMSGs are favoured in WTs due to their light
weight, high power density, and high efficiency [7]. The PMSG
is often directly coupled with the rotor, eliminating the need
for a gearbox and its associated cost and maintenance issues,
whilst increasing the system reliability. They are not only used
in small scale WTs but also in large MW applications. The
PMSG is much more expensive than the DFIG of a similar
size. However, it has one clear advantage compared with the
DFIG: namely, it does not need reactive magnetizing current.

Figure2 shows a scheme using a PMSG where the magnetic
field inside the generator is produced by permanent magnets
on the rotor. Because there is no field winding in this generator,
there is no associated I2R loss so that this type of generator
has a very high efficiency, well above 90%.
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Fig. 2: Wind turbine system with PMSG

III. DETECTION OF SHORT-CIRCUIT FAULT

When an internal fault occurs on the stator winding it
can cause severe damage to the machine and the system to
which it is connected so that early detection of turn to turn
short circuit faults during operation is essential to eliminate
consequential damage. Unless detected early enough, it
might lead to fire, explosion, and even loss of personnel
[8]. It has been reported that a turn to turn short circuit
results in a disruption of the magnetic field symmetry in
the winding region of the machine as well as increasing the
magnitudes of certain harmonic components [9]. Turn-to-turn
faults are difficult to detect with confidence. Overcurrent and
differential relays are generally agreed to be inadequate for
this purpose. However, turn-to-turn faults can be detected
by analyzing the current spectrum in the electrical machine
fault will introduce sideband harmonics in the current signal
[8]. The following subsections will describe how the fault
sideband harmonics may occur during a turn to turn short
circuit in EESG and PMSG current signals, and potentially
how they may deviate from a healthy state.

1) Turn-to-turn fault in an EESG: In the case of an
EESG with stator turn-to-turn faults, turn-to-turn faults can
be detected by the presence of a spectral component at twice
the fundamental supply frequency 2f , and the amplitude of
this spectral component is directly related to the extension of
the fault [10]. Other spectral components that can be observed
in the stator line current are given by [11], [12].

fc = kf (1)

where fc and f are detectable spectral components due
to the fault and fundamental frequency components; k is an
even integer (k=2, 4, 6). For example, on a machine supplied
at f = 50Hz, the stator spectrum exhibits 100, 200 and 300
Hz components because of turn-to-turn winding faults or
supply unbalance, including single phasing.

2) Turn-to-turn fault in a PMSG: Current signature analysis
has been studied extensively for fault detection in AC motors
[13], [14]. According to [9], the occurrence of a turn-to-turn
fault results in a disruption of magnetic field symmetry in the



end winding region of the machine as well as increasing the
magnitudes of certain harmonic components. This is because
there is a severe imbalance between the current flowing in
the shorted turn and the corresponding diametrically oppo-
site turn in the winding. This type of fault will introduce
sideband harmonics around the fundamental frequency in the
machine current spectrum. It was later experimentally proven
by Ebrahimi et al. [15] that turn-to-turn faults actually give
rise to a sequence of such sidebands given by

fc =

(
1± 2ksa + 1

p

)
.f (2)

where fc and f are detectable spectral components due to
the fault and fundamental frequency components, respectively,
k is a constant coefficient (k=0, 1, 2, 3, ...) and p the number
of pole pairs.

IV. MODELLING AND SIMULATION

A WT model was implemented in MATLAB/Simulink,
including wind speed, rotor, pitch control system, drivtrain and
generator model (see previous work [16]-[17]). Accordingly,
the models of the PMSG and EESG will be only described
here briefly.

A. EESG model

The detailed description and model equation derivation of
EESGs can be found in most power system and electrical
machine references [18]-[19]. Only the most important as-
pects of the modeling will be presented here. The system
has been modeled and simulated in the Simulink toolbox
extension of Matlab. Figure3 shows the complete equivalent
circuit representation of a three-phase EESG. A dc power
source supplies the rotor field circuit. The field current If
is controlled by a variable resistance connected in series with
the field winding. Each phase has an internal generated voltage
with series resistance Rs and series reactance Xs. Assuming
balanced operation of the machine, the rms phase currents are
equal to each other and shifted by 120 electrical degrees. The
same thing is also true for the voltages.

EESGs operate only at synchronous speed; a constant speed
that can be determined by the number of poles and the fre-
quency of alternation of the armature-winding voltage. EESGs
are called synchronous because their speed is directly related
to the stator electrical frequency. Therefore, the synchronous
speed can be expressed in (rad/s) as:

ωs =
ω

p
=

2πf

p
(3)

or in (rev/min) as

ns =
60f

p
(4)

where ωs is the angular speed of the magnetic field (which is
equal to the angular rotor speed of the synchronous machine),
ω is the angular frequency of the electrical system, f (Hz)
is the electrical frequency, p pairs of poles and ns is the the
synchronous speed in (rev/min) or rotational shaft speed.
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Fig. 3: Equivalent circuit representation of a three-phase EESG

According Faraday’s Law the induced voltage in the stator
winding can be expressed as:

ea(t) = Emax sinωt

eb(t) = Emax sin(ωt−
2π

3
)

ec(t) = Emax sin(ωt+
2π

3
)

(5)

The peak voltage in any phase of a three-phase stator is

Emax = ωkNφ = 2πfkNφ (6)

where N is the number of turns in each phase winding; φ
is the flux per pole due to the excitation current If ; k is the
winding factor of the stator.

The voltage in RMS value is:

Emax =
2√
2
πfkNφ = 4.44fkNφ (7)

This voltage is a function of the frequency or rotational
speed, the flux that exists in the machine, and, of course, the
construction of the machine itself.

B. PMSG model

A large number of papers describe the modeling of PMSGs
[17]. PMSGs are ordinary synchronous machines with the field
excitation provided by a permanent magnet. In other words,
PMSGs provide the magnetic field so that there is no need
for field windings, or supply current to the field. The PMSG
operational principles are similar to that of EESGs, with the
exception that they are run at different speeds, producing a
variable-frequency output. Since the flux of the permanent
magnet machine cannot be changed, they are not generally



connected directly to the ac network. The power produced
by the generator is initially variable voltage and frequency.
This ac variable voltage should be rectified immediately to
dc, and the resultant dc power then inverted to ac with a
fixed frequency and voltage. Thus, the PMSG model has been
implemented based on previous equations with the following
assumptions:

• The flux (φ) is fixed;
• The rotational speed ns is variable;
• The electrical frequency f is proportional to the rotational

speed;
• The induced voltages are proportional to the rotational

speed;
As mentioned previously, the fundamental frequency in the

PMSG is proportional to the rotational speed as explained in
Equation (4) which clearly indicates that the current signals
acquired from the generator terminals of the PMSG are always
non-stationary so that it is essential to take into account the
characteristic of the signal is varying with time. This will be
briefly discussed in the results section.

The parameters for both generators used are detailed in
Table 1.

TABLE I: The Parameters of PMSG and EESG.

PMSG
Cut-In, Rated, Cut-Out Wind Speed 3 m/s, 12 m/s, 25 m/s
Rated Tip Speed 80 m/s
Rotor Diameter 93 m
Gearbox Ratio 1:108
Line-Line Voltage (RMS) 690v
Grid Frequency 50Hz
Pole Pairs 2
Generator Speed (RPM) 200- 1500
Stator phase resistance (ohm) 0.026
Stator phase inductance (H) 0.02587

EESG
Cut-In, Rated, Cut-Out Wind Speed 3 m/s, 12 m/s, 25 m/s
Rated Tip Speed 80 m/s
Rotor Diameter 93 m
Gearbox planetary gearbox
Line-Line Voltage (RMS) 690v
Frequency 50Hz
Pole Pairs 2
Rated Generator Speed (RPM) 1500
Stator phase resistance (ohm) 0.026
Stator phase inductance (H) 0.02587

V. CASES

This section will present case study simulations of an EESG
and PMSG. It may be interesting to analyze the behavior of
the models during simultaneous stator faults. Thus, we proceed
with a series of tests using a few short circuited inter turns
(SCIT) or with a resistive contact of several ohms between a
high number of inter turns in the same phase. The following
tests were carried out for both machines:

• healthy machine,
• short-circuit of 1 inter turn on phase a,
• short-circuit of 3 inter turns on phase a,
• short-circuit of 5 inter turns on phase a,

In order to observe the faults level, stator windings were
modified to access the intermediate tap points. These tap
points are distributed over phase a with the aim being able
to short-circuit a number of inter turns in a quasi-geometric
progression. In other words, the EESG and PMSG models
are implemented with intermediate terminals of the winding,
in order to emulate (or introduce) short-circuit faults with a
low number of shorted turns: (1, 3, and 5) turns on the phase
a as shown in Figure 4. While different tests are introduced
for the two generators, the rated stator current and the fault
current flowing in shorted turns are recorded to observe how
the stator current will change in relation to the number of
short-circuiting turns. Figure 5 shows simulation results of the
evolution of the fault current flowing in the shorted turns as a
function of the number of turns in the short circuit of EESG
stator winding. As the number of shorted turns increases,
the fault current amplitude becomes higher, inevitably might
lead to rapid overheating in the conductors, and accordingly,
undetected turn-to-turn faults could grow and culminate into
major ones such as phase-to-ground or phase-to-phase faults.
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Fig. 4: Configuration of the access points of the stator wind-
ings of the EESG and PMSG models
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Fig. 5: Amplitude evolution in the fault current flowing in
shorted turns in relation to the number of short-circuiting turns
for an EESG.

VI. RESULTS AT CONSTANT SPEED
Simulation results for a PMSG and EESG models under

healthy condition and stator winding faults are discussed in
this section. For each simulation result, data were recorded for
10 seconds at 5kHz sampling frequency and analysed using the
fast Fourier transform (FFT) algorithm in MATLAB. Figure 6



shows the fundamental harmonic of the stator current spectrum
of the EESG machine operating at constant speed. We can see
components with frequencies at 63.33 Hz and 31.66 Hz, which
are intentionally simulated to be present in the healthy machine
spectrum as a dynamic eccentricity. Other spectral components
given by the equation (1) are generated by the turn to turn
faults in the EESG machine. The fault signature frequencies
are labelled and identified as a function of the number of
shorted turns. As the number of shorted turns increases, we
notice a slight increase in the fault signature frequencies given
by equation (1).
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Fig. 6: Stator current spectrum around the fundamental har-
monic for the EESG.

Figure 7 shows the stator current spectra of the PMSG
after stator winding faults were applied, with the machine
operating at constant speed. Turn to turn short circuit results
in a disruption of the magnetic field symmetry in the winding
region of the PMSG as well as increasing the magnitudes of
certain harmonic components. The fault signature frequencies
are clearly shown around the fundamental frequency and these
frequencies are consistent for each case. These frequencies are

defined by equation (2) and generated by the turn to turn faults
in the PMSG machine. The amplitude of these frequencies are
increased with the number of shorted turns. This might be a
result of a severe imbalance between the current flowing in
the shorted turn and the corresponding diametrically opposite
turn in the winding.
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Fig. 7: Stator current spectrum around the fundamental har-
monic for the PMSG operating at fixed speed.

Generally PMSGs operate at variable speed, therefore the
model was run at variable speed to investigate the potential
for fault frequency tracking. Figure 8 shows the stator current
spectra for the healthy PMSG and with increasing shorted turn
faults operating at variable speed. Although the fault signature
frequencies are still seen in the spectrum, it is difficult to
distinct between the fault levels in relation to the number of
shorted turns, because the rotational speed in the PMSG is
proportional to the wind speed so that the number of harmonics
in the PMSG spectrum will increase with the rotational speed,
as described by Equation (4). Consequently, the fault signa-
ture frequencies are buried in wide-band dominant frequency
components (i.e. harmonics due to variable rotational speeds)
of the current signal that are irrelevant to the fault.
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Fig. 8: Stator current spectrum around the fundamental har-
monic for the PMSG operating at variable speed.

VII. CONCLUSION

This paper analyzed the stator winding fault behavior of
synchronous machines. Based on the analyses, approximate
equations for the fault current flowing in shorted turns have
been derived. The results obtained from the approximate
equations have been compared to the results of time-domain
and frequency-domain simulations. The results showed the
frequencies inherent to shorted turn faults occur in the spectra
of each machine. Although turn-to-turn faults have led to
increase the amplitude of the fault current flowing in shorted
turns, the rated current amplitude does not change so that it
is difficult to detect with confidence using overcurrent and
differential relays. However, we have noticed that the current
analysis gives good results in the frequency-domain. It should
be pointed out here that this type of fault is problematic
to diagnose in time domain. Another important conclusion
of this work is that stator winding faults have a particular
signature that should be detectable in current signals in an
EESG because this machine is operating at constant speeds,
while the current signals in the PMSG includes harmonics,
which are due to the variation of wind speed as well as those
related to the presence of the electrical fault. Ultimately, stator
current signature analysis could be used to detect and diagnose
faults in a fixed speed WT. The technique can be used to

detect faults in a variable speed machine but may require
an alternative analysis technique (e.g wavelet or short-term
Fourier transform analysis) to detect the magnitude of such
faults.
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ABSTRACT 

Operational data of wind turbines recorded by the Supervisory Control 
And Data Acquisition (SCADA) system originally intended only for 
operation and performance monitoring show promise also for assessing 
the health of the turbines. Using these data for monitoring mechanical 
components, in particular the drivetrain subassembly with gearbox and 
bearings, has recently been investigated with multiple techniques. In 
this paper the advantages and drawbacks of suggested approaches as 
well as general challenges and limitations are discussed focusing on 
automated and farm-wide condition monitoring. 
  
KEY WORDS: Wind Turbine; Condition Monitoring; SCADA; 
Drivetrain; Machine Learning. 

INTRODUCTION 

Optimisation of maintenance is essential to further reduce the costs of 
offshore wind energy, where accessibility is restricted by weather 
conditions and the availability of transport vessels. Advanced 
maintenance strategies involve condition based decision-making while 
trying to predict the future maintenance needs before critical failures 
with significant downtimes occur. Continuous and reliable information 
of the condition of the different subassemblies and parts of the wind 
turbine are needed for effective prognosis of ongoing degradation and 
estimation of remaining life of critical parts. 
 
Supervisory Control And Data Acquisition (SCADA) data have gained 
more attention in the last five years as they are usually available 
without any additional expense in contrast to dedicated condition 
monitoring systems which can cost approx. £14,000 per turbine (Yang 
et al., 2014). The operational data recorded in a SCADA system vary 
with the turbine type, but usually include at least wind speed, wind 
direction, yaw angle, pitch angle, active power, reactive power, 
generator current, generator speed, gearbox temperature, generator 
winding temperature and ambient temperature. Comparing parameters 
over time and in relation to the operational level has helped to identify 
changes in the behaviour related to developing failure 
(Wiggelinkhuizen et al., 2008; Feng et al., 2013). Based on that, the 
main idea has been the modelling of signals, mainly temperatures, 
assuming normal conditions and revealing problems via comparing 
modelled and measured temperatures. The focus of research has been 
on data-driven training of algorithms and machine learning tools 
adapted from computer science have been proposed, e.g. artificial 

neural networks (Garcia et al., 2006; Zaher et al., 2009; Bangalore and 
Tjernberg, 2015; Sun et al., 2016), adaptive-neuro fuzzy inference 
systems (Schlechtingen et al., 2013), nonlinear state estimation 
techniques (Wang and Infield, 2012) or multivariate adaptive 
regression splines (Tan and Zhang, 2016). An overview of the progress 
in the area of condition monitoring with operational data can be found 
in a recent review of the authors (Tautz-Weinert and Watson, 2016a). 
 
Most publications on condition monitoring with operational data 
consist of a proposal for a new technique and a demonstration using 
one case study, whereas difficulties and challenges are rarely discussed. 
Yang et al. (2014) highlighted in their review of the current challenges 
in wind turbine condition monitoring that the sampling resolution of 
SCADA data is too low to monitor all aspects of a wind turbine and 
doubted the usefulness of SCADA monitoring in terms of early 
detection. The authors suggested the integration of SCADA-based 
monitoring in condition monitoring systems, however. Dienst and 
Beseler (2016) shared their lessons learned from monitoring of an 
offshore wind farm with operational data indicating e.g. that finding 
training data without errors is difficult, 2% of sensors are 
malfunctioning at any given time, using multiple models to predict a 
signal are beneficial and anomalies in models can indicate a defect but 
also unrepresentative training. 
 
This work addresses the challenges in using operational data for wind 
turbine monitoring with the approach of normal behaviour modelling of 
temperatures based on experiences with real data from four wind farms. 
Drawbacks of the individual techniques are discussed and general 
challenges highlighted regarding data quality, pre-processing, input 
selection and alarm generation.  
 
In the next section, the basic idea of normal behaviour modelling is 
introduced. The subsequent and third section summarises the properties 
of the data used. The fourth and main section addresses the challenges 
if failures are to be found retrospectively, whereas the fifth section 
gives a brief outlook if such an approach is used on-line. In the last 
section this work is concluded by summarising the key problems to be 
solved. 



 

MONITORING BY NORMAL BEHAVIOUR MODELLING 

Normal behaviour modelling is a way of building a virtual clone of a 
system which always represents the healthy state. The model generates 
a time series of the target signal, which can be compared with the 
measured signal to detect anomalies. Due to the complexity of wind 
turbine systems such models cannot be built analytically, but are data-
driven. In a training period, where the turbine is assumed to operate 
normally, the relationship between input signals and the target signal is 
learnt by the algorithms.  
 
Adequate target signals and corresponding inputs have to be selected to 
achieve a model which is useful in failure detection. Simple models 
predicting a signal with a sensor signal of the same type at the same 
location might help for monitoring the sensor itself. More advanced 
models can be used to monitor mechanical parts which are affected by 
wear: drivetrain bearings and gears. Wear will change the efficiency of 
a part and result in increased thermal losses which should become 
visible in the form of changed thermal behaviour (Feng et al., 2013). To 
monitor wear-related parts, temperature signals are commonly 
modelled with other temperatures of surrounding parts, signals 
describing the turbine’s load level such as power output, electrical 
currents, rotational or wind speeds and/or signals representing the 
environmental background such as the nacelle or ambient temperature. 

CASE STUDY 

Records from four wind farms are used to highlight the challenges in 
condition monitoring with operational data. SCADA data are 
retrospectively analysed aiming to detect failures in advance. Although 
the turbines are from different manufacturers, all turbines are geared, 
variable speed and pitch controlled. The turbines cover the 1.5 MW and 
the 2-3 MW class. The investigated records range from only half a year 
to nearly five years and from 11 to 102 turbines in a farm. Reports of 
replacements are available for three of four farms. Although records 
from farm A are not supported by sufficient reports for failure detection 
analysis, normal behaviour modelling can be tested and compared 
based on the SCADA data. The key features of the data used are 
summarised in Table 1. 
 
Table 1. Wind farm data used in this study 

Farm Location Power 
(MW) 

Number 
of 

turbines 

Length 
of data 
(years) 

Service 
report 

A USA 1.5 108 0.5  Stoppages 
only 

B UK 2-3 12 2.5 Stoppages 
and 
replace-
ments 

C Europe 2-3 25 3.0 Replace-
ments 

D Europe 2-3 11 4.7 Replace-
ments 

 

CHALLENGES IN RETROSPECTIVE ANALYSES 

The challenges in using operational data for condition monitoring can 
be divided into: data quality, monitoring setup, proposed modelling 
techniques, comparing modelling techniques, modelling capabilities 
and alarm generation. 

Data quality 

Retrospective failure detection based on operational data is conducted 
with two main types of information: SCADA records available in a 
SQL database or spreadsheets and a service record in a spreadsheet. 
 
SCADA data. Although signals in SCADA records are usually named, 
the labelling of the signals is not necessarily sufficient for clear 
identification of the sensor properties. As there is neither a common set 
of available signals nor a generally accepted taxonomy, different 
SCADA systems use different names and abbreviations. Although 
unambiguous signals like the power output, wind speed, blade pitch 
angle etc. are always easily identifiable, other signals require more 
details for complete identification. In particular, the location of 
temperature sensors is often insufficiently described. In the investigated 
data the labelling ranged from only numbering all temperature sensors 
(e.g. temperature 2, farm B), giving the name of the subassembly (e.g. 
gearbox temperature, farm A), specifying a part type in a subassembly 
(e.g. gearbox bearing temperature, farm C) to providing approx. 
location of the sensor at a part (e.g. gearbox bearing high speed shaft 
gearbox [vicinity / side], farm D). Even in the farm with the most 
detailed labelling, the locations are open to interpretation: e.g. there are 
two generator bearing sensors labelled 1 and 2 or oil temperatures are 
labelled basis, level 1 and 2. Detailed knowledge of the turbine 
configuration or a technical drawing including the sensor locations 
would certainly ease the analysis but has not been available for this 
work. Reasons can be found in insufficient documentation and 
confidentiality issues applicable to academic studies with commercial 
data. 
 
Although missing, invalid and poorly processed data hinder the 
analysis, the most serious problems are caused by inconsistencies. Any 
change in the behaviour of a sensor might be interpreted as a change of 
the monitored part. In data from farm D, several changes of the 
maximum occurring values can been observed as shown for example in 
Fig. 1. Sensor specifications or detailed information about the operation 
are not available. It is assumed that this event could be caused by a 
sensor drift, unreported maintenance or a change in control and 
operation. An actual change of the performance of the monitored part 
without any interaction by the operator is unlikely due to the rapid 
change. Additionally, the temperatures in the illustrated example are 
lower after the step, i.e. the losses would be reduced which is contrary 
to the effects of wear. To allow analysis if inconsistencies occur, data 
should be split into windows without steps which are investigated 
separately. A systematic way of detecting steps is required for 
automated splitting and applying the training and testing procedure of 
normal behaviour modelling. Comparing monthly maximums and 
percentiles resulted in adequate detection of steps. 

 
Fig. 1. Example of sensor inconsistency in a bearing temperature with a 
maximum temperature of 78° C before and 73° C after the step (farm 
D) 
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Service record. Insufficient documentation plays a major role if  
monitoring techniques are evaluated with real data. The service record 
consisted in the investigated case study of a list of stoppages in the best 
case (farm B). Comments were added only for major replacements or 
occasionally for other maintenance actions describing the reason for the 
stoppage time. Assumed reasons for replacements and interpretations of 
alarms, stoppages and inspections were generally missing.  
Accordingly, the list of replacements is not a list of failures. 
Replacements could have been done as preventative interventions or 
after a failure which had caused the turbine to stop. Additionally, the 
time of replacement is not necessarily the time of the failure or the 
detection of the failure. For the other investigated data, the failure 
record consisted only of a list of replacements (farm C and D) or was 
not available at all (farm A).  
 
Although it can be assumed that the operator or service provider has 
always full access to all reports, the shortcoming of incomplete or 
incomprehensible service reports is widely acknowledged. 
Accordingly, service providers are currently focussing on the 
digitisation of reporting and implementation of procedures to improve 
the data quality e.g. by using mobile devices for documentation. 
 
Monitoring techniques based on operational data have to be developed 
and tested with real data. It is very rare to get data of good quality and 
complete information in terms of turbine and sensor specifications or 
operation and maintenance reports. As this will similarly be true for 
industrial application, any modelling technique has to cope with 
incomplete information. However, the impact of data quality problems 
should be carefully considered when findings are generalised. 

Monitoring setup 

The detailed configuration of the monitoring setup consists of multiple 
choices in terms of the model architecture, input selection, pre-
processing and training length. 
 
Model architecture. A model using other signals to predict the target 
can be denoted as full signal reconstruction (FSRC) (Schlechtingen and 
Santos, 2010). Modelling could use the signal of the same time as the 
target or from previous time-steps to account for the inertia of the 
system. Using the latest history of the target itself could also be chosen 
to form an autoregressive model. If the history of the target is combined 
with other inputs, the model can be denoted as autoregressive with 
exogenous input (ARX). Although ARX models are more accurate in 
predicting the target, the prediction is likely to adapt to new behaviour, 
which might hinder failure detection. 
 
Input selection. Selecting the inputs for modelling has commonly been 
done based on the physical understanding of the system also called 
domain knowledge (Schlechtingen and Santos, 2010; Wang and Infield, 
2012; Bangalore and Tjernberg, 2015; Sun et al., 2016) or by 
correlation analyses between possible inputs and the target (Zaher et al., 
2009; Tautz-Weinert and Watson, 2016b). Although most domain 
knowledge approaches have been based on the basic idea of the heat 
transfer in the drive train, the reasons for the manual choices of inputs 
have not been documented thoroughly. The limitation of possible inputs 
is additionally in contrast to the idea of using machine learning to find 
complex relationships. Using automated correlation analyses to build 
the model has the risk of selecting multiple similar inputs, e.g. 
generator currents 1-3.  
 
The case studies show that e.g. for an ambient temperature a low 
correlation with a bearing temperature results in an exclusion as input, 
but less seasonal error is observed if the ambient temperature is 

selected as input. Selecting inputs only based on their correlation to the 
target is accordingly not necessarily the best option. Using all possible 
inputs and an algorithm to select inputs based on their relevance for 
accurate prediction has been proposed by Dienst and Beseler (2016)  in 
applying the Least Absolute Shrinkage and Selection Operator 
(LASSO). 
 
Pre-processing. Pre-processing of inputs should include a validity 
check to exclude data acquisition errors and time-steps with missing or 
erroneous data have to be removed completely. Additionally, scaling 
and lag removal might be necessary depending on the modelling 
technique and input selection (Schlechtingen and Santos, 2010). 
Focussing on data when the turbine is operating might ease the 
modelling and failure detection and can be implemented by filtering 
with a power threshold (Sun et al., 2016). 
 
Training length. There is no consensus about the necessary training 
time under (assumed) healthy conditions. The proposed lengths range 
from 3 (Schlechtingen and Santos, 2010) to 14 months (Bach-Andersen 
et al., 2016). A length of one year is obviously beneficial to cover the 
full seasonal variation, but such a long training time is probably not 
always achievable. Other work has tried to concentrate data from a 
longer period in a shorter, representative training set (Wang and Infield, 
2012; Bangalore and Tjernberg, 2014; Tan and Zhang, 2016), although 
there is not necessarily a benefit in terms of the modelling accuracy. 
 
Tests in the case study reveal that the required training length depends 
on the turbine specific operation and behaviour. Even one month 
training results in acceptable accuracy for some turbines. Future work 
should address the sensitivity to the training length in more detail. 

Proposed modelling techniques 

Several models have been proposed for the required regression task of 
normal behaviour modelling. 
 
Multi-linear regression (LIN).  LIN trained by a least square algorithm 
is a simple way of modelling the system. Although this assumes 
linearity, the prediction can have a similar level of accuracy compared 
with more complex tools (Schlechtingen and Santos, 2010; Tautz-
Weinert and Watson, 2016b). Slight improvements have been proposed 
such as allowing selected polynomial terms up to ninth order 
(Wilkinson et al., 2014), interactions, i.e. products of the inputs (Tautz-
Weinert and Watson, 2016b) or added features such as squares, roots 
and logarithms (Dienst and Beseler, 2016). 
  
Artificial Neural Networks (ANNs). ANNs have been widely applied 
to extend the modelling capabilities to non-linearity. A basic setup uses 
a feed-forward backpropagation network with one input, one hidden 
layer with a small number of neurons and one output layer with a single 
linear output.  Past research has involved a range of configurations, 
though authors do not always describe in detail the set up used, Zaher et 
al. (2009) found that 3 neurons in one hidden layer provide the best 
results in an ARX approach to model the gearbox bearing. In contrast, 
Bangalore and Tjernberg (2014) use two hidden layers with 13 neurons 
in the first layer and one neuron in the second layer in a FSRC 
approach for gearbox monitoring. Sun et al. (2016) state that the 
number of neurons has to be selected for each turbine individually 
ranging from 2 to 10. L. Wang et al. (2016) claim that so called deep 
ANNs are better with three hidden layers of 100 neurons. Tan and 
Zhang (2016) highlight the difficulty in selecting  a configuration when 
randomly varying the number of neurons and the type of transfer 
function and trying to select the best of 200 ANNs.  
 



 

Tests in the case study show that using more neurons generally 
improves the accuracy, but there is no significant advantage of deep 
ANNs with three layers of 100 neurons. Varying the number of neurons 
and their transfer function randomly does not counterbalance the worse 
performance of some turbines if using a fixed configuration. 
 
Adaptive Neuro-Fuzzy Inference Systems (ANFIS). ANFIS as a way 
of learning a fuzzy system with ANN approaches have been proposed 
by  Schlechtingen, Santos and Achiche (2013). Two inputs were used 
per target with generalised normal distribution membership functions 
and hybrid gradient descent and least squares estimation learning. The 
main advantage over straight ANNs was given as the reduced training 
time.  
 
Nonlinear State Estimation Technique (NSET). NSET has been 
proposed by Y. Wang and Infield (2012) as a way of modelling based 
on a state matrix and a weighting vector determined by a least square 
approach and a Euclidean distance operator. NSET includes the target 
signal in the state matrix and for determining the weighting vector. It is 
accordingly comparable to an ARX approach.  To find a good 
compromise of better accuracy for more states and reasonable 
computational effort for fewer states, a data selection algorithm was 
proposed. The algorithm selects states, if they are less than the defined 
distance ߜ away from a regular grid of 100 sections of the normalised 
input. However, the algorithm allowed multiple states for the same grid 
point which resulted in a high numbers of states. Reproducing the 
approach in the case studies shows that it was impossible to get a 
similar number of states for different turbines with one selected ߜ. 
However, Guo, Infield and Yang (2012) defined the algorithm to select 
only one state per grid point. Testing this approach results in a 
dramatically lower, but more regular number of states for different 
turbines.  
 
Multivariate Adaptive Regression Splines (MARS). MARS have been 
applied to wind turbine normal behaviour modelling by Tan and Zhang 
(2016) allowing a maximum of 21 basis functions. Each basis function 
can be a constant (for the intercept), a hinge function or a product of 
hinge functions.  
 
Further well known techniques such as Gaussian Process and Support 
Vector Machine could also be used for the regression task. However, 
first case study results could not demonstrate any advantage in using 
these techniques (Tautz-Weinert and Watson, 2016b). 

Comparing modelling techniques 

The proposed modelling techniques and different input choices are 
compared with configurations as detailed in Table 2. A comparison of 
different modelling techniques should consider two main features: 
effort and accuracy. 
 
The evaluation of the effort can be expressed in the simplicity of the 
model and the computational effort in training. The simplicity is here 
evaluated based on the subjective experience of implementing the 
technique in MATLAB 2015b. Computational effort is easily 
comparable in terms of the runtime. Example numbers are given using 
a common desktop PC (64-bit operating system with a four core CPU 
with 2.8 GHz clock rate and 32 GB memory).  
 

Table 2. Modelling setups for comparison 

Technique Properties 

General - Data from farms A-D, pre-processed including non-
operation filtering, turbines with known failures 
excluded. 

- Modelling target: Gearbox (bearing) temperature 
- Modelling inputs: 

a) 2 inputs, b) 3 inputs selected based on correlation 
c) power and rotational speed, d) power, rotational 
speed and ambient temperature 

- 3 months training, 3 months’ blind testing 
LIN Linear terms and interactions. 

ANN FSRC feed-forward network with 20 neurons in 
hidden layer. 

ANFIS 2 generalised normal distribution membership 
functions per input. 

NSET One state per grid point, ߜ ൌ 	0.001. 

MARS Maximum of 21 basis functions. 

 
There are internal MATLAB functions for all discussed methods, 
except MARS for which a toolbox is available online (Jekabsons, 2016) 
and NSET which has been implemented according to Wang and Infield 
(2012). LIN does not require any detailed configuration and is 
consequently the easiest method to implement. In contrast, settings 
have to be chosen for ANNs, ANFIS and MARS. The default settings 
and main approaches in the literature might be useable for configuring 
MARS and ANFIS, but in particular the choice of the architecture of 
ANNs appears to be surprisingly random. 
 
The major advantage of linear models is the low computational effort 
required as shown in Table 3. Training of ANNs also requires relatively 
low computational effort with approx. 1-3 s per turbine, but training 
deep ANNs or repeating the training hundreds of times is highly time 
consuming. ANFIS modelling is done in about five seconds for up to 
three inputs, but can take up 30 min per turbine if seven inputs are used. 
Training NSET in this configuration requires usually 1-12 s with longer 
runtime for more inputs. MARS training is more expensive and can 
take more than a minute per turbine depending on the complexity of the 
model. 
 
Evaluating the accuracy is feasible if the normal operation prediction is 
assessed. The error of prediction and actual measurement should be as 
small as possible and mean absolute errors, root mean squared errors, 
standard deviations or the coefficient of determination (ܴଶሻ can be used 
as metrics.   
 
Table 4 compares the normal behaviour modelling accuracies based on 
the mean absolute error for the different modelling techniques, input 
selection cases a)-d) and the farms A-D. Due to the limitations in the 
service reports, the turbines in the study might be affected by further 
problems which could change the modelling performance, but the 
selection of the median value from all turbines should give a good 
indication of the accuracy. It can be seen, that NSET modelling is most 
accurate with mean absolute errors as low as 0.10 °C. This is due to the 
autoregressive nature of this technique. Using fewer inputs is better 
here, which can be explained by the stronger impact of the target signal 
in this case. All FSRC techniques are similarly accurate with slight 
advantages of ANN, ANFIS and MARS over LIN modelling. Using 
three instead of two inputs based on correlation usually improves the 
performance for FSRC techniques. Using only power and rotational 
speed to predict the drive train temperature is less accurate. Adding the 
ambient temperature as a third input improves the prediction in most 



 

cases. Comparing the different farms, prediction is most accurate in 
farm D, but similar low errors can be found in farms B and C. 
Prediction in farm A is less accurate, in particular in input case c). 
Possible reasons are manifold, but most likely the differences in the 
measurement setup and turbine operation of different manufacturers 
play a major role.  
 
Table 3. Training time in seconds given as median values of all 
evaluated turbines and cases a) – d) 

Technique Farm A Farm B Farm C Farm D 
LIN 0.02 – 

0.02 
0.02 – 
0.02 

0.01 – 
0.02 

0.02 – 
0.02 

ANNs 1.73 – 
3.02  

1.41 – 
2.00 

1.58 – 
1.99 

1.70 – 
2.93 

ANFIS 4.42 – 
5.70 

4.40 – 
5.42 

4.39 – 
5.43 

4.40 – 
5.48 

NSET 1.27 – 
1.94 

2.40 – 
6.64 

1.90 – 
5.09 

3.00 – 
11.52 

MARS 23.81 – 
71.82 

5.44 – 
25.42 

1.37 – 
18.77 

0.78 – 
11.00 

 
Table 4. Accuracy in modelling normal behaviour given as median 
value of the mean absolute error (°C) of all evaluated turbines 

Technique Case Farm A Farm B Farm C Farm D 

Used 
turbines 

 102 8 18 6 

LIN a) 2.24 1.22 0.98 1.07 
b) 2.03 0.96 0.91 0.85 
c) 11.41 1.62 1.39 1.53 
d) 3.07 1.29 1.06 1.45 

ANNs a) 2.27 1.12 0.87 0.89 
b) 2.00 0.89 0.86 0.82 
c) 9.47 1.58 1.39 1.19 
d) 3.21 1.27 1.41 1.49 

ANFIS a) 2.16 1.14 0.93 0.97 
b) 1.94 0.88 0.88 0.82 
c) 10.65 1.60 1.39 1.16 
d) 2.92 1.22 1.20 1.19 

NSET a) 0.23 0.33 0.38 0.91 
b) 0.25 0.27 0.35 1.09 
c) 0.18 0.10 0.10 0.13 
d) 0.25 0.77 1.53 0.52 

MARS a) 2.18 1.08 0.87 0.93 
b) 2.11 0.86 0.85 0.82 
c) 10.23 1.58 1.39 1.15 
d)  3.07 1.26 1.09 1.14 

 
Accurate normal behaviour prediction does not necessarily imply good 
failure detection in terms of early and reliable alarms. Comparing the 
residual of modelled and measured temperatures before a known failure 
should give an insight in possible early warnings. However, displaying 
unfiltered residuals from a long period is not feasible due to the high 
number of samples per month and strong fluctuations.  
 
In Fig. 2 – Fig. 6  the fortnightly moving averages of the residuals are 
given for 1.5 years’ period before a gearbox replacement in farm B for 
LIN, ANN, ANFIS, NSET, MARS, respectively. Although most 
techniques and input selection cases show rising values in the last three 
months before the replacement, trends of a similar magnitude can be 
seen during the previous year. It is obvious that the smoothed residual 

is not an ideal indicator for failures and dedicated alarm generation 
techniques are required (which will be discussed below). However, 
ANN, NSET and MARS modelling with input case a) seem to give the 
most prominent increase directly before the replacement. Noticeably, 
case d) shows a trend from June to December which differs from the 
other cases in four of five modelling techniques. Future studies are 
required to better understand the impact of the input selection. 
 

Modelling capabilities 

These types of models are unlikely to be able to predict uncommon 
features in a signal. It has been observed that some abrupt increases in a 
bearing temperature in farm C cannot be modelled by any of the 
modelling techniques. These spikes occur only when the turbine power 
is rapidly increasing as shown in Fig. 7. 
 

 
Fig. 2. Residuals from LIN modelling before a gearbox replacement  

 
Fig. 3. Residuals from ANN modelling before a gearbox replacement  

 
Fig. 4. Residuals from ANFIS modelling before a gearbox replacement  
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Fig. 5. Residuals from NSET modelling before a gearbox replacement  

 
Fig. 6. Residuals from MARS modelling before a gearbox replacement  

 

Fig. 7. Example of unpredicted spike in a bearing temperature when 
power is rapidly increasing (farm C, modelling with ANNs) 

Alarm generation 

The idea behind normal behaviour modelling is the use of the residual 
of measured minus modelled temperature to act as an indicator of 
potential failure. Different approaches have been proposed for 
generating alarms based on the residual time series. 

 
Absolute threshold. The simplest way of generating alarms is by 
defining an absolute threshold for the residual. This can be by  
confidence bands (Garcia et al., 2006), with a defined threshold based 
on experience (Schlechtingen and Santos, 2010; Wilkinson et al., 2014) 
or a certain probability to occur derived from the error distribution in 
training, as e.g. less than 0.01 % (Schlechtingen et al., 2013). The 
reliability of the absolute threshold can be increased by using a daily 
average (Schlechtingen and Santos, 2010). 
 
Mahalanobis distance. A Mahalanobis distance is a metric to condense 
the correlation of multiple variables and their distribution to a single 
number. Bangalore and Tjernberg (2015) proposed using a 
Mahalanobis distance of the residual and target referenced to the 
training distribution to detect anomalies. Alarms were raised if averages 
of three days were smaller than a distance with a probability of 1 % 
defined by a Weibull distribution fitted to the training results. 
 
Exponentially weighted moving average control chart (EWMA). 
EWMA has been proposed to consider cumulating effects by Wang et 
al. (2016). Compared to the simple absolute threshold for the error, here 
a recursive statistic is built from the current error and the statistic in the 
previous time-step. A weighting of 0.2 for the current error and 0.8 for 
the previous statistic was used. 
 
Abnormal level index (ALI). Sun et al. (2016) developed a numeric 
index to describe the abnormality of monitored signals. The index is 
calculated as a daily sum of penalties for residuals significantly bigger 
than the expected based on the training period. The penalty was defined 
as 5 and 3 for a penalty exceeding 97.5 and 75 % cumulative 
probability, respectively, or 1 else. After normalising, the index 
provided values between 0 and 1, with smaller values for less 
abnormality. 
 
Discussion. Failure detection accuracy can be assessed in terms of the 
true positive and false positive alarms compared to the number of 
failures. Additionally, the advance time of detection before failure is a 
key measure. Comparing the failure detection capabilities is hindered 
by the above mentioned difficulties with the service reports. A 
thorough comparison of the modelling and the alarm generation 
techniques is out of the scope of this paper.  
 
As an example, the detection of the above discussed gearbox failure in 
farm B modelled with ANNs in case a) is given in Fig. 8. All alarm 
generation techniques require a defined threshold for raising the alarm. 
The proposed probabilities of occurrence determined from the training 
data are not necessarily the optimal choice for new cases. A threshold 
defined by a probability of > 0.01 % for the residual leads to vanishing 
alarms in the investigated case studies. The limits are defined with a > 2 
% probability of occurrence for the absolute daily threshold, > 1 % 
probability for the Mahalanobis distance, 6ߪ in the EWMA and the ALI 
as proposed. It can be seen that this selection of thresholds results in an 
increasing number of alarms in the two months before the replacement.  
However, a significant number of alarms occur far ahead of the 
replacement, in particular with the Mahalanobis distance. These alarms 
have to be considered as false alarms. The number of false alarms can 
be reduced by requiring several alarms in a row or in a specific time 
window as e.g. a week (Schlechtingen et al., 2013). By applying a limit 
of at least two days of alarms in one week and adapted thresholds the 
number of possibly false alarms can be reduced, as shown in Fig. 9. In 
this example, there is no significant difference between the first reliable 
detection of the different alarm generation techniques. However, the 
Mahalanobis distance and EWMA technique have a higher number of 
alarms after the first alarm than the absolute threshold and can be seen 
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as more reliable accordingly. The fuzzy indicator provided by ALI 
shows a clear upward trend, but has two previous peaks which have to 
be assumed to be false alarms. A calibration of alarm thresholds with 
one turbine in the farm without replacements has been tested, but 
resulted in unsatisfactory results as many false alarms occurred.  
 
The comparison of alarm generation techniques highlights that the 
adequate definition of thresholds has a higher impact than the 
differences in the detection approach. Future work has to address this 
problem in more detail. 

 
Fig. 8. Testing different alarm generation techniques (gearbox 
replacement at the end of time axis, ANNs modelling, case a), farm B) 

 

Fig. 9. Using a weekly filter for different alarm generation techniques 

(gearbox replacement at the end of time axis, ANNs modelling, case a), 
farm B) 

FUTURE CHALLENGES IN ON-LINE MONITORING 

Retrospective analyses of failures are of interest in an academic project 
of finding suitable tools for monitoring, but in industrial reality wind 
turbines are to be monitored on-line. Depending on the data 
management system this could be with new data every day, every ten 
minutes or even more frequently.  
 
Most challenges which occur in retrospective analyses are also valid 
here, as e.g. SCADA data quality problems and model definitions. 
Problems with missing maintenance information are probably less 
severe in industrial on-line monitoring as a wind farm operator is aware 
of ongoing maintenance. However, insufficient or misleading 
maintenance reports occur in industrial practice too. The requirement 
for minimal computational effort for modelling will be even greater for 
on-line monitoring. Additionally, computational environments other 
than MATLAB are common in industry and will require adapted 
implementations. On-line monitoring will require adequate re-training 
of models after significant changes in the system or operation, as 
briefly discussed by Bangalore and Tjernberg (2013). 
 
The main challenge of on-line monitoring is the required accuracy of 
monitoring in to allow decisions to be made about whether or not to 
send a maintenance team. A balance needs to be struck between 
providing early warnings whilst avoiding false alarms in order to 
minimise maintenance costs and maximise turbine availability. In the 
first months of operation of a new farm, there should be an iterative 
process of training and model evaluation until confidence in the results 
is achieved.  
 
A combination of monitoring based on operational data and common 
vibration-based condition monitoring systems might be desirable to 
increase the reliability. 
 

CONCLUSIONS 

Based on analyses of case studies on four wind farms, the challenges in 
using operational data for wind turbine condition monitoring can be 
summarised as: 

 Poor SCADA data documentation and quality, 
 Insufficient maintenance documentation, 
 The absence of best practice in selecting modelling 

techniques and settings, 
 Isolated behavioural features which are difficult to model, 
 The difficulty in defining sensible alarm thresholds which 

give sufficient notice of early genuine problems but minimise 
false alarms. 

 
First findings indicate that ANN, ANFIS and MARS are similar 
accurate FSRC modelling techniques with the least computational 
effort for ANN. However, linear modelling is only slightly less accurate 
and possibly preferable due to its simplicity. NSET modelling is more 
accurate than all other techniques because of its autoregressive nature. 
 
A brief comparison of smoothed residuals from all techniques before a 
gearbox replacement indicated that good modelling accuracy does not 
necessarily coincide with straightforward failure detection. Selecting 
inputs based on correlation or based on the physics seem to result in 
different residual trends, which are not fully understood yet. 
 



 

If the different proposed alarm generation techniques are compared, no 
clear advantage of any approach is directly visible. A weekly filter of 
alarms is desirable to increase the certainty of results. 
 
Future work will address the challenges in more detail and thoroughly 
evaluate the capabilities of failure detection with operational data. 
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Abstract. Effective condition monitoring techniques for wind turbines are needed to improve 
maintenance processes and reduce operational costs. Normal behaviour modelling of 
temperatures with information from other sensors can help to detect wear processes in drive 
trains. In a case study, modelling of bearing and generator temperatures is investigated with 
operational data from the SCADA systems of more than 100 turbines. The focus is here on 
automated training and testing on a farm level to enable an on-line system, which will detect 
failures without human interpretation. Modelling based on linear combinations, artificial neural 
networks, adaptive neuro-fuzzy inference systems, support vector machines and Gaussian 
process regression is compared. The selection of suitable modelling inputs is discussed with 
cross-correlation analyses and a sensitivity study, which reveals that the investigated modelling 
techniques react in different ways to an increased number of inputs. The case study highlights 
advantages of modelling with linear combinations and artificial neural networks in a feed-
forward configuration. 

1.  Introduction 
Onshore wind turbines are now able to compete with fossil fuel powered plants in terms of the 
levelised cost of energy achieving 74 EUR/MWh [1]. But unscheduled maintenance, particularly 
offshore, results in high costs as accessibility is restricted by weather and availability of vessels. 
Studies of recent offshore projects reported operation and maintenance costs of 40-44 EUR/MWh [2]. 
Advanced maintenance strategies based on actual condition rather than using corrective or preventive 
maintenance can reduce these costs. Evaluation of operational data recorded by the Supervisory 
Control And Data Acquisition (SCADA) system of a wind turbine shows promise for the purposes of 
condition monitoring as the high cost of additional sensors in a common dedicated condition 
monitoring system is avoided.  

Increased temperatures in bearings or the gearbox can indicate reduced performance or imminent 
failure as mechanical faults are usually accompanied by increased heat loss [3]. Thresholds of absolute 
values are generally implemented in control systems to avoid overheating. But wear-related changes in 
the temperature trends are often hidden by normal operational fluctuations in temperature due to the 
variable speed nature of modern large-scale wind turbines as shown for a simulated fault in figure 1. 
Some of the first approaches of condition monitoring using SCADA temperature data used manual 
trending against power [3–5] or clustering [6,7] to find anomalies. These techniques succeeded for 
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single turbines in historic analyses, but feasible detection in real time is difficult due to the required 
manual interpretation of results. Another recent approach is normal behaviour modelling, i.e. the 
prediction of a temperature while assuming that the component is behaving normally [8–17]. This 
approach appears to be more suitable for automated failure detection due to an easily interpretable 
indicator, i.e. the residual of measured minus modelled temperature. 

In this paper, different approaches for normal behaviour modelling are investigated using historic 
SCADA data. Extensive tests are conducted to gain not only the most accurate temperature prediction 
for a single turbine and modelling target, but also the average prediction performance and the 
robustness of each approach using automated training and testing. Two different drive train 
temperatures are modelled for more than 100 turbines in a wind farm. 

In section 2 of this paper the methodology is presented. Section 3 provides details of the case study. 
The modelling results are discussed in section 4. The final section summarises the findings and 
addresses future work. 

2.  Methodology 
In this section the idea of normal behaviour modelling is explained and the settings of the different 
modelling approaches described. Cross-correlation and performance metrics are introduced for input 
selection and prediction evaluation, respectively. 

2.1.  Normal behaviour modelling 
Temperature signals in recorded SCADA data can give information about the changing performance 
of mechanical parts. Temperatures of drive trains fluctuate due to the rapidly changing operation of 
variable speed turbines as shown in figure 1. Normal behaviour modelling is a way to reveal hidden 
trends in temperature signals. This type of model can be used to estimate temperature using 
information from sensors external to the component being monitored. Figure 2 shows the idea of 
modelling a measured variable by using environmental signals (e.g. ambient temperatures, wind speed 
etc.) and process parameters (e.g. rotational speeds, other temperatures) as inputs to predict the target 
temperature. The model learns normal behaviour by training with input and desired output data under 
healthy conditions. After training, the residual of measured minus modelled temperature acts as a 
potential indicator of failure: if a fault occurs, the residual will increase. An alarm can be raised if a 
fixed threshold or confidence band is violated [8,12–14], if a Mahalanobis distance considering 
temperature and residual distributions from training exceeds a probability threshold [16] or based on 
an abnormal level index which weights residuals according to their probabilities [17]. Generating 
warnings on the basis of residuals of one or more days of data has been proposed to provide more 
confidence in alarms [11,13,17]. Further evaluation of alarms with fuzzy inference systems has been 
applied [8,13,15,17]. 
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Figure 1. Example of a bearing temperature time 
series. A time series of a simulated fault is added 
for visualisation of the detection difficulty. 
 

Figure 2. Normal behaviour modelling sketch. 
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The quality of the failure indicator depends on the accuracy of the modelling. In this study, 
modelling based on linear combinations ([9,11,14,15]) is compared with artificial neural networks 
([8,11,12,15–17]) and adaptive neuro-fuzzy inference systems ([13]). Two novel techniques for 
modelling of SCADA temperatures are added: support vector machine regression and Gaussian 
process regression.  

Autoregressive modelling approaches and state estimation techniques ([18]) are not considered due 
to their more likely adaption to new behaviour in the case of a failure as a result of using the target 
temperature itself for prediction. This is not necessarily desirable for condition monitoring when 
changes in a physical state which may be an indicator of failure need to be detected through an 
increased residual. Due to this reason all approaches are here applied in a strictly non-autoregressive 
way without using any historic values of the target signal (in contrast to approaches in [8–10,16,17]). 

2.2.  Cross-correlation 
The sample cross-correlation (CC) gives a measure of the similarity of two signals and can be used as 
a basis for selecting suitable inputs for modelling. CC at lag 𝑘𝑘 is defined for two (real-valued) signals 
𝑥𝑥 and 𝑦𝑦 as: 

 CC(𝑘𝑘) = � (𝑥𝑥𝑖𝑖+𝑘𝑘 − �̅�𝑥)(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)
𝑖𝑖

 (1) 

with an over-bar denoting the mean value. The summation uses all possible samples for the 
particular lag of interest. Usually CC is normalised to a value of one for auto-correlation at lag zero, 
i.e. the correlation of the target with itself at zero lag.  

2.3.  Model approaches 
Linear modelling is conducted with a least squares fit of first order polynomials. Simple linear 
modelling (LIN) uses a linear regression model consisting of a sum of all inputs with individual 
weights and an interceptor. Linear modelling with interactions (LIN-I) uses a model with intercept, 
linear terms and products of pairs of inputs (without squared terms). 

Artificial neural networks (ANNs) are applied in two configurations: feed-forward (ANN-FF) and 
layer recurrent (ANN-LR). ANN-FF describes a network with only connections from inputs and layers 
to the next layer without any feedback or recurrence and has been used in [11,12] for normal 
behaviour modelling. In contrast, ANN-LRs have a delayed feedback from layer outputs to the input 
of the layer and are used as a novel way to include system inertia in SCADA normal behaviour 
modelling. For both configurations a hyperbolic tangent sigmoid (tansig) transfer function is used for 
neurons in the hidden layer and a linear transfer function for the output layer. Initial tests resulted in an 
architecture consisting of one hidden layer with six neurons. ANN-LRs are set up with a delay of two 
steps for the recurrence. Training of neural networks is conducted by Levenberg-Marquardt 
backpropagation and the mean squared error as performance function. Convergence criteria are 
minimum performance gradient of 10-7, 1000 epochs or 6 successive iterations with validation 
performance failing to decrease. Selected training data are randomly split using 80% for real training 
and the rest for validation. 

Gaussian process regression (GPR) [19] is configured with a squared exponential kernel for the 
covariance function and a constant basis matrix. Standardisation of inputs is applied. Fitting uses a 
subset of data points approximation. 

Linear epsilon-insensitive Support Vector Machine (SVM) [20] regression is applied with a 
Gaussian kernel. A Sequential Minimal Optimisation solver is used with training until a feasibility gap 
of 10-3, a zero gradient or 106 iterations are reached. 

Adaptive Neuro-Fuzzy Inference System (ANFIS) modelling is conducted in a similar manner to 
[13]. Two Gaussian membership functions are associated with each input. A linear membership 
function is used for the output. Training uses a hybrid algorithm utilising backpropagation and least 
squares in 20 epochs. 

The Science of Making Torque from Wind (TORQUE 2016) IOP Publishing
Journal of Physics: Conference Series 753 (2016) 072014 doi:10.1088/1742-6596/753/7/072014

3



 
 
 
 
 
 

For easier comparison of the modelling accuracy, a ‘trivial’ modelling approach is added, where 
the target temperature is set to the mean value of the training period. The prediction is constant and 
unaffected by any input signals. 

2.4.  Evaluation metrics 
Modelling is conducted in Matlab 2015b on a 64-bit operating four core CPU with 2.8 GHz clock rate 
and 32 GB memory. The runtime for training and testing of each model is recorded to compare the 
computational effort of the investigated approaches. 

Performances of the modelling approaches are evaluated in terms of the mean absolute error 
(MAE), the root mean squared error (RMSE), standard deviation of error (STDE) and the Coefficient 
of Determination (𝑅𝑅2), as defined in equations (2)-(6) with 𝑛𝑛 as the number of samples, 𝑦𝑦 as the 
measured and 𝑦𝑦� as the modelled target temperature. Results of the individual models for all turbines 
are summarised for the farm by calculating the median of the metric values as a measure for the 
average performance ignoring extreme outliers. Although outliers will be of interest in the condition 
monitoring stage, here the focus lies on the average performance of normal behaviour modelling. 
Residual distributions of all turbines are merged by selecting the median for each bin count. 

 MAE = 1
𝑛𝑛
∑ |𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖|𝑛𝑛
𝑖𝑖=1   (2) 

 
RMSE = �1

𝑛𝑛
∑ (𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖)2𝑛𝑛
𝑖𝑖=1 �

1
2  

(3) 

 STDE =  𝜎𝜎(𝑦𝑦� − 𝑦𝑦), with standard deviation 𝜎𝜎(𝑥𝑥) as: (4) 

 
𝜎𝜎(𝑥𝑥) = � 1

𝑛𝑛−1
∑ (𝑥𝑥𝑖𝑖 − �̅�𝑥)2𝑛𝑛
𝑖𝑖=1 �

1
2  

(5) 

 𝑅𝑅2 = 1 − 𝜎𝜎(𝑦𝑦�−𝑦𝑦)2

𝜎𝜎(𝑦𝑦)2   (6) 

3.  Case study 
The different approaches are tested with data from a US wind farm with more than 100 turbines. Six 
months of SCADA data from variable speed turbines with a rated power of 1.5 MW are analysed. The 
data consist of temperatures as well environmental and control parameters in 10 minute averages.  

Two different drive train temperatures are selected to be modelled: a bearing temperature and a 
generator winding temperature. Due to a lack of maintenance information, all turbines are assumed to 
operate normally with only short stops for minor repairs. Distributions of operational status are 
analysed to exclude turbines with significantly long downtimes. The analysis is carried out by visual 
interpretation of status codes and distributions of power output. Six turbines are excluded from 
modelling due to unusually high frequencies of non-operational status codes and downtime. 

The investigated SCADA data are not always of a high quality. Unfeasible sensor values are found 
to occur and temperature records show a non-physically high frequency of discrete whole numbers. 
Although this is a limitation to achieving good modelling accuracy, the aim of comparing different 
approaches is not hindered. Pre-processing of data is conducted in terms of applying valid sensor 
ranges similar to [13]. Detailed investigations of SCADA uncertainties by means of sensitivity studies 
are left for future research. 

3.1.  Cross-correlation results 
All possible inputs for predicting the two chosen target temperatures are analysed with a cross-
correlation (CC) calculation up to a maximum lag of ± 20 ten-minute time-steps. The results in table 1 
indicate that the Bearing A temperature correlates with the other bearing, the ambient and generator 
temperature. Power, currents, wind and rotational speeds have a delayed impact on the bearing 
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temperature. Blade angles and generator voltages do not correlate with the bearing temperature. A 
comparison of the maximum CC with the CC without any lag reveals the most significant difference 
for the ambient temperature with a value of 0.82 for a signal lagging 17 time-steps behind compared to 
0.76 for the simultaneous signals. The results for the Generator 1 temperature as the target show that 
the two generator temperatures are statistically identical. The target temperature is highly correlated 
with the Bearing B temperature, the power, phase currents and wind and rotational speeds. The 
ambient temperature has a low cross-correlation value of 0.48. Power, currents and wind speed have a 
delayed correlation with the generator temperature. 

 

Table 1. Highest normalised cross-correlation (CC) (as a function of lag) with Bearing A (a) and 
Generator 1 (b) temperature. Median of all turbines for first 7500 samples. 
(a)  (b) 
Signal CC(best lag) CC(0)  Signal CC(best lag) CC(0) 
Bearing A temperature 1.00 (0)   Generator 1 temperature 1.00 (0)  
Bearing B temperature 0.86 (1) 0.86  Generator 2 temperature 1.00 (0)  
Ambient temperature 0.82 (-17) 0.76  Bearing B temperature 0.95 (3) 0.94 
Generator 1 temperature 0.76 (0)   Power  0.83 (-2) 0.80 
Generator 2 temperature 0.76 (0)   Phase current A 0.83 (-2) 0.80 
Power 0.45 (-5) 0.42  Phase current C 0.83 (-2) 0.80 
Phase current A 0.45 (-5) 0.42  Phase current B 0.82 (-2) 0.80 
Phase current B 0.45 (-5) 0.42  Wind speed 0.81 (-3) 0.79 
Phase current C 0.45 (-5) 0.43  Bearing A temperature 0.76 (0)  
Wind speed 0.45 (-5) 0.42  Generator speed 0.72 (-3) 0.71 
Generator speed 0.36 (-3) 0.35  Rotor speed 0.72 (-3) 0.71 
Rotor speed 0.36 (-3) 0.35  Ambient temperature 0.48 (-20) 0.39 

3.2.  Model input sensitivity study 
The selection of inputs for the normal behaviour modelling is based on CC results. However, for 
condition monitoring purposes not only the prediction accuracy is important, but also the visibility of a 
fault in the residual [13]. Therefore, previous temperature measurements of the target component are 
excluded from the model as inputs, as these would be affected by any change in condition of the 
component. As the premise of normal behaviour modelling is that the system is not changing then 
including previous measurements may mask systematic changes in the residuals. 

A basic configuration (1a) is defined by selecting the two strongest signals in the CC as inputs 
without any lag. Using more inputs and the optimal lag could increase the prediction accuracy. 
Therefore, a sensitivity study is conducted in which the signal lag is changed and further inputs are 
added according to their CC value. Table 2 summaries the input selection for the configurations with 
different inputs and their sub-variations a-c with different lags. 

3.3.  Training and testing selection 
Models are trained with 7,500 samples, which is equivalent to 52 days. A further 10,000 samples (69 
days) are used for blind testing of the models. A two-fold cross validation is applied by partitioning of 
the measured SCADA time series into a training period and a testing period. These are then reversed 
for a second run. It has to be emphasised that down times and start or stop manoeuvres are not 
excluded in order to test the robustness of the approaches. 
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Table 2. Inputs and lags for modelling the different configurations. 
 Target: Bearing A temperature Target: Generator 1 temperature 
Configuration 1 2 3 1 2 3 
 a b c a b c a b c a b c a b c a b c 
Generator 1 temperature (t) x x x x x x x x x          
Ambient temperature (t) x  x x  x x  x          
Ambient temperature (t-17)  x x  x x  x x          
Bearing B temperature (t)          x x x x x x x x x 
Power (t)    x  x x  x x  x x  x x  x 
Power (t-2)           x x  x x  x x 
Power (t-5)     x x  x x          
Phase current A (t)       x  x    x  x x  x 
Phase current A (t-2)              x x  x x 
Phase current A (t-5)        x x          
Wind speed (t)                x  x 
Wind speed (t-3)                 x x 

4.  Results 
The results of the case study confirmed that modelling of a temperature with information from other 
sensors results in a time series signal, which reliably follows the transient trends of the measured 
signal, as shown for an example in figure 3. 

4.1.  Baseline results 
The results of the bearing temperature modelling with the baseline configuration (1a), table 3, indicate 
that linear, ANN and ANFIS approaches perform each with a similar small error. The best approach 
cannot be found as different approaches perform differently for each of MAE, RMSE, STDE and 𝑅𝑅2 
metrics and for the two tests. GPR and SVM techniques, however, do not perform as accurately as the 
other models. The results in table 4 for the generator temperature modelling show a similar pattern, 
although the ANN approaches give the least errors for all metrics.  

Figure 4 gives an insight into the distribution of model performance across the wind farm. 
Although ANN-LR modelling results in the lowest minimum and median MAE, more than 20 % of 
the turbines have a distinctly larger MAE compared with the other approaches. A model with an 
inferior minimum accuracy, but more constant prediction errors for the whole farm will be preferred 
for failure detection purposes. Maximum errors in the farm should be interpreted with care, as they 
could also denote a problem in the particular turbine, since normal operation is not guaranteed.  

An analysis of the median distribution of the residual time series for the two tests, as given in 
figure 5 and figure 6 for the generator temperature, reveals bell shaped distributions with a slightly 
skewed behaviour. The residuals of nearly all approaches are shifted to negative values for the 
chronological training and test sequences (test 1), but to positive values for the reversed sequence (test 
2). The residual distributions of the linear modelling are skewed in an ambiguous way. If the 
modelling approaches are compared, it can be noted that linear modelling results in the broadest and 
ANN-LR in the sharpest peaks. The skewness trends of the residual distributions are reversed for the 
bearing temperature modelling, i.e. positively skewed for test 1 and negatively skewed for test 2. A 
seasonal influence is assumed to cause the skewness, which is already visible for the trivial model. 
However, the effect cannot be explained completely by this hypothesis. 
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Figure 3. Bearing temperature modelling 
example. 

Figure 4. Sorted MAE of all turbines for bearing 
temperature modelling in configuration 1a, test 1. 

 

Table 3. Performance of different approaches for bearing temperature modelling in 
basic configuration (1a). Median values are given from all turbines’ models. 
 MAE (°C) RMSE (°C) STDE (°C) 𝑅𝑅2 (-) 

Test 1 Test 2 Test 1 Test 2 Test 1 Test 2 Test 1 Test 2 
Trivial 8.92 8.78 10.89 10.62 8.37 7.37 0.00 0.00 
LIN 2.43 2.22 3.30 2.93 2.96 2.88 0.88 0.85 
LIN-I 2.30 2.28 3.16 3.08 2.89 2.99 0.88 0.83 
ANN-FF 2.32 2.34 3.28 3.24 3.08 3.04 0.88 0.84 
ANN-LR 2.15 2.35 3.34 3.82 3.02 3.52 0.87 0.78 
GPR 3.30 3.26 5.28 5.83 4.89 5.32 0.65 0.46 
SVM 3.12 3.15 5.02 5.69 4.53 5.32 0.72 0.48 
ANFIS 2.36 2.27 3.19 3.01 2.94 2.89 0.88 0.85 

 

Table 4. Performance of different approaches for generator temperature modelling 
in basic configuration (1a). Median values are given from all turbines’ models. 

 MAE (°C) RMSE (°C) STDE (°C) 𝑅𝑅2 (-) 
Test 1 Test 2 Test 1 Test 2 Test 1 Test 2 Test 1 Test 2 

Trivial 16.02 16.42 20.27 19.81 18.75 18.43 0.00 0.00 
LIN 3.56 3.42 4.69 4.57 4.60 4.38 0.94 0.95 
LIN-I 3.44 3.36 4.58 4.42 4.52 4.21 0.94 0.95 
ANN-FF 3.04 2.90 4.30 4.26 4.19 4.11 0.95 0.95 
ANN-LR 2.49 2.38 4.25 4.68 4.10 4.55 0.95 0.94 
GPR 3.16 3.25 4.77 5.25 4.64 5.09 0.94 0.93 
SVM 3.40 3.44 5.20 5.91 5.05 5.83 0.93 0.90 
ANFIS 3.35 3.30 4.83 4.37 4.68 4.31 0.94 0.95 
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4.2.  Sensitivity to input selection 
The RMSE is plotted for the different input configurations in figure 7 and figure 8 for bearing and 
generator temperature prediction, respectively. For simplification, results from test 1 and 2 are merged 
by presenting the inferior value from both tests. Using the optimal lag from the CC instead of 
simultaneous inputs is not beneficial in general. Also, more inputs do not lead to higher accuracy for 
all approaches. A moderate RMSE reduction trend is visible for linear and ANN modelling approaches 
if more inputs are used. SVM and ANFIS tend to have larger errors with more inputs. If both 
simultaneous and lagged inputs are used, the error is only smaller for all results in linear and ANN-FF 
modelling. There is no clear trend for the other approaches. The optimal setting is found for the RMSE 
metric in configuration 3c and ANN-FF modelling, although LIN, LIN-I and ANN-LR show very 
similar accuracy. A detailed comparison for this configuration is given in table 5 and table 6 for 
bearing and generator temperature prediction, respectively. For the bearing temperature modelling 
ANN-FF performs best in all median values of the metrics. However, LIN-I shows similar accuracy 
for the median value and is generally a better performer in terms of the mean values of the metrics, 
suggesting that it is less affected by outliers. ANN-LR performs well in terms of the median metric, 
but significantly less well with respect to mean values. The results of the generator temperature 
modelling show that both ANN approaches perform most accurately here if the median metric values 
are compared. For ANN-LR the inferior performance in terms of the mean indicates again that the 
approach performs poorly for some turbines. 
 

  
Figure 5. Median residual distribution for 
generator temperature prediction for test 1. 

Figure 6. Median residual distribution for 
generator temperature prediction for test 2. 
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Figure 7. Input sensitivity study for bearing 
temperature prediction. 

Figure 8. Input sensitivity study for generator 
temperature prediction. ANFIS modelling was 
not completed for configuration 3c due to 
excessive runtimes. 

 

Table 5. Performance for bearing temperature modelling in configuration 3c.  
 MAE (°C) RMSE (°C) STDE (°C) 𝑅𝑅2 (-) 

Median Mean Median Mean Median Mean Median Mean 
LIN 2.04 2.31 2.85 3.16 2.62 2.90 0.87 0.86 
LIN-I 1.84 2.09 2.66 2.88 2.48 2.69 0.89 0.87 
ANN-FF 1.68 1.99 2.51 3.00 2.39 2.81 0.90 0.84 
ANN-LR 1.83 2.87 3.24 4.89 2.98 4.34 0.84 0.04 
GPR 2.67 2.93 5.18 5.47 4.99 5.09 0.56 0.52 

 

Table 6. Performance for generator temperature modelling in configuration 3c.  
 MAE (°C) RMSE (°C) STDE (°C) 𝑅𝑅2 (-) 

Median Mean Median Mean Median Mean Median Mean 
LIN 3.19 3.41 4.07 4.37 4.00 4.23 0.96 0.95 
LIN-I 2.50 2.80 3.71 4.01 3.64 3.87 0.96 0.96 
ANN-FF 2.33 2.61 3.46 4.00 3.29 3.85 0.97 0.95 
ANN-LR 2.05 3.45 3.37 6.29 3.22 5.77 0.97 0.47 
GPR 2.31 2.64 3.74 4.09 3.60 3.96 0.96 0.95 

4.3.  Comparison of computational effort 
Table 7 gives the training and testing runtimes for the different modelling approaches and different 
configurations. The computational effort is insignificant for linear modelling. SVM and ANN-FF are 
trained in about two seconds, but ANN-LR and GPR require 10 and 20 seconds, respectively. The 
runtime for ANFIS increases significantly with the number of inputs with less than a second for a 
configuration with 2 inputs and nearly 30 minutes per turbine for 7 inputs. 
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Table 7. Average runtime for model training and testing per turbine in seconds. 
Configuration Bearing, 

1a, test 1 
Generator, 
1a, test 1 

Bearing, 
2a, test 2 

Bearing, 
2b, test 1 

Bearing, 
2c, test 1 

Generator, 
3a, test 2 

Bearing, 
3c, test 1 

Inputs 2 2 3 3 5 4 7 
LIN 0.02 0.02 0.02 0.02 0.02 0.02 0.02 
LIN-I 0.02 0.02 0.02 0.02 0.03 0.02 0.05 
ANN-FF 2.36 2.28 2.17 2.26 2.43 2.24 2.61 
ANN-LR 11.84 10.14 15.42 10.99 14.38 11.10 18.63 
GPR 18.86 19.86 17.42 17.99 17.50 21.05 17.94 
SVM 2.49 1.92 2.51 2.52 3.12 2.18 3.54 
ANFIS 0.67 0.65 1.60 1.62 32.93 6.41 1702.63 

5.  Conclusion  
Normal behaviour modelling of two wind turbine drive train temperatures has been investigated with 
modelling approaches based on linear systems, ANNs, ANFIS, SVM and GPR. In a case study with 
real SCADA data from more than hundred turbines’ inputs for modelling were selected following a 
detailed correlation analysis. All investigated approaches predict the target temperatures with good 
accuracy. Best results are obtained for linear, ANN and ANFIS modelling in a basic configuration 
with two input signals. GPR modelling works well for the generator temperature prediction, but less 
well for the bearing temperature prediction. Modelling with SVM results in distinctly higher errors for 
both targets. Results of a two-fold cross-validation indicate that there is a seasonal impact in the 
modelling since the residuals are differently skewed for different training periods. In a sensitivity 
study, the impact of adding inputs and introducing time lagged signals is investigated. The results 
indicate that most approaches perform better with more inputs, except for SVM and ANFIS. The 
computational effort is significant for ANN-LR and GPR independent of the number of inputs and for 
the ANFIS model if five or more inputs are used. If the different variants of approaches are compared, 
it can be noted that adding interactions to linear models is beneficial, whereas introducing recurrence 
in the ANN model seems to be only helpful for some turbines, but leads to inferior performance for 
others. Adequate input selection with appropriate delay may be a better way to increase the accuracy, 
although the simple selection of delay based on averaged correlation analysis results does not work in 
general. 

Investigations of filtering out non-operational times (similar to [17]) and a sensitivity study of the 
training length and number of neurons in an ANN have been the subjects of preliminary investigation, 
but are not included in this paper due to length limitations. Further research will continue to find 
suitable approaches for optimal selection of inputs for temperature modelling. In particular ANN-FF 
and linear modelling will be investigated with more inputs using approaches such as stepwise adding 
and removing of inputs. Finally, the failure detection capabilities of the normal behaviour models 
developed in this research need to be tested with real data containing recorded failures. It is intended 
to compare the approaches with auto-regressive and state estimation techniques to evaluate the 
differences in failure detection in more detail. Different advanced alarm concepts like the Mahalanobis 
distance [16] and abnormal level index [17] will be compared. 
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Abstract – Cost-effective condition monitoring 
techniques are required to optimise wind 
turbine maintenance procedures. Current 
signature analysis investigates fault indications 
in the frequency spectrum of the electrical 
signal and is thereby able to detect mechanical 
faults without additional sensors. Due to the 
modern variable speed operation of wind 
turbines, fault frequencies are hidden in the 
non-stationary frequency spectra. In this work, 
artificial neural networks are applied to identify 
faults under transient conditions. The feasibility 
of the detection algorithm is demonstrated with 
a wind turbine SIMULINK model, which has 
been validated with experimental data. A 
framework is proposed for developing and 
training the algorithm for different rotational 
speeds. A simulation study demonstrates the 
ability of the algorithm not only to detect faults, 
but also to identify the strength of the faults as 
required for fault prognosis. 

Keywords – Wind Turbine, Condition 
Monitoring, Fault Detection, Current Signature 
Analysis, Neural Networks, Variable Speed. 

1 Introduction 
With an increasing number of wind turbines 
(WTs) being installed in offshore and remote 
locations, there is a need for cost-effective 
maintenance. Predictive maintenance aims to 
detect condition changes early and enables 
maintenance teams to schedule the required 
work considering other limiting factors as e.g. 
weather conditions. For this reason, a reliable 
condition monitoring system (CMS) is required 
to detect and diagnose WT failures in their 
early stages. 

In order to develop an effective CMS, the best 
solution for two characteristics of the system 
must be found: 

• A signal providing information to 
describe the state of the monitored 
component. 

• A technique to extract the condition 
state from the signal. 

The most simple, but sufficient accurate 
solution has to be determined to reduce 
maintenance costs by giving reliable results 
and avoiding unnecessary equipment. 
Generally, the signals used in common WT 
CMSs include vibration, acoustic emission, 
strain, torque, temperature, lubrication oil 
quality, electrical output, and supervisory 
control and data acquisition (SCADA) system 
signals [1]-[2]. Among them, vibration is the 
most well-known signal used in a WT CMS [3]-
[4]. However, analysis of electrical signals from 
the generator has been shown to have 
advantages over vibration signals for condition 
monitoring as the costs and complexity 
involved in current measurements are 
significantly lower [5-6]. Additional installation 
costs are avoided because current signals are 
already continuously measured in WTs [7]. 

Current Signature Analysis (CSA) utilises the 
knowledge that mechanical faults as rotor 
unbalance show up in increased amplitudes in 
the sidebands of harmonics of the fundamental 
frequency. However, it is a challenge to extract 
WT fault signatures from current 
measurements under variable speed 
operation. Moreover, the useful information in 
current measurements from a WT usually has 
a low signal to noise ratio, and thus it is very 
difficult to extract this information in a reliable 
way. 

Extracting the fault signature from a monitored 
signal is commonly done by the well-known 
fast Fourier transform (FFT) and the short–
time Fourier transform (STFT) [9]-[10]. 
However, in the case of variable speed WTs, 
FFT and STFT often fail to extract the required 
information which can vary in the time-domain, 



since the operation is predominately non-
stationary due to variations in the wind speed.  

The attractive feature of Artificial Neural 
Networks (ANNs) for condition monitoring is 
their ability to represent complex, nonlinear 
relationships through learned pattern 
recognition or signal regression. ANNs have 
been successfully used to identify changes in 
the relationships between SCADA signals that 
indicate the development of a failure [10]. 

In this work, the possibility of detecting 
mechanical faults in wind turbines by CSA is 
investigated. The application of Artificial Neural 
Networks (ANN) for detecting mechanical 
faults is proposed to automate the fault 
detection in the light of the limitations of 
spectral analysis in processing signals subject 
to transient effects. The diagnosis of rotor 
unbalance in a WT is used as an illustrative 
example. The simulation results demonstrate 
that the proposed method is effective in 
detecting mechanical faults in a variable speed 
machine. 

2 Methodology 
This research aims to develop a reliable 
technique to detect mechanical faults in a WT 
via the generator current signal. An ANN 
technique is proposed to automate the fault 
detection in a variable speed machine. The 
main purpose of using an ANN is to identify 
changes in the current signal which have non-
stationary characteristics due to the variable-
speed operating conditions of WTs, and to 
provide online fault detection in advance of 
catastrophic failures.  

The data used in this work is based on a WT 
simulation model. The model is developed and 
validated with operational data of five 2.5MW 
turbines recorded by the SCADA system over 
the period of 1 year. The measured data 
recorded at 32Hz sampling frequency included 
wind speed, wind direction, pitch angle, 
rotational speed and three-phase power 
output. The model parameters used are 
detailed in Table 1.  

The required phases of the algorithm 
development and testing for an online fault 
detection tool are given in Table 2.  

Table 1: Model parameters. 

Parameter Value 
Cut-In, Rated, Cut-Out 

Wind Speed 
3 m/s, 12 m/s, 25 

m/s 
Rated Tip Speed 80 m/s 
Rotor Diameter 90 m 
Gearbox Ratio 1:77.4 

Line-Line Voltage (RMS) 690V 
Frequency 50Hz 
Pole Pairs 3 

Rated Generator Speed 
(RPM) 1000 

 

Table 2: Phases of the project. 

Phase Task 
1 Development of simulation tool 

providing current signal 
2 Validation of simulation with 

experimental data 
3 Training and testing of automated 

fault detection with simulation 
4 Validation of fault detection with 

experimental current signal 
Final Online fault detection with current 

signal 
 

In the following, the methodology behind the 
simulation model, CSA and the ANN fault 
detection are presented. 

2.1 Wind turbine SIMULINK model 
A general model for representation of variable 
speed wind turbines was implemented in 
MATLAB/Simulink, including wind speed, rotor, 
pitch control system, drivetrain and generator 
model [11]. The model has been developed to 
facilitate the investigation of condition 
monitoring and effective algorithm 
development for fault detection. The measured 
wind speed recorded by a wind turbine 
SCADA system has been used as model input 
to validate the response of the wind turbine 
model. Figure 1 shows the response of the 
model compared with measured generator 
speed. It is visible that the model is in good 
agreement with the measured data. 

 

 



 

Figure 1: Model validation considering generator speed.

Rotor eccentricity is used as an illustrative 
example to investigate the use of the proposed 
fault detection algorithm in variable speed 
WTs. During rotor eccentricity, certain 
sideband harmonics around the fundamental 
frequency in the machine current signal occur 
with increased amplitudes proportionally to the 
fault level. It was experimentally proven [5] that 
rotor eccentricity faults give rise to a sequence 
of such sidebands given by: 

 𝑓𝑓𝐶𝐶 = �1 ±
2𝑘𝑘 − 1
𝑝𝑝

� 𝑓𝑓 (1) 

where 𝑓𝑓𝐶𝐶 and 𝑓𝑓 are the rotor fault and 
fundamental frequency, respectively, 𝑘𝑘 is an 
integer (𝑘𝑘 = 1, 2, 3, . ..) and 𝑝𝑝 is the number of 
pole pairs. The fundamental frequency in a 
variable speed WT with a permanent magnet 
synchronous generator (PMSG) is proportional 
to the rotational speed, i.e. the characteristic of 
the signal is varying with time.  

Figure 2 shows the stator current spectra for a 
faulty and healthy machine for fixed rotational 
speed. Components with frequencies at 60 Hz 
and 34Hz are intentionally induced in the 
healthy machine spectrum to represent 
machine-specific noise close to the fault 
frequencies. The fault frequencies identified by 
the equation (1) are labelled in Figure 2. 

2.2 Automated fault detection with 
Artificial Neural Networks 

A simple detection threshold for the fault 
frequencies is not feasible due to the variable 
speed operation and accordingly shifting 
frequencies.  

ANNs are useful for automated processing and 
finding non-linear relationships. With data-
driven training, ANNs learn to weight different 
inputs in a way to deliver the required output. 
Problem-specific settings have to be found in 
particular for the number of neurons and the 
amount of training required. 

 
Figure 2: Example of stator current spectra for healthy and faulty states. 



The rotational speed 𝜔𝜔 of a PMSG turbine 
varies significantly. Fault detection for all 
possible rotational speeds is not feasible with 
a single ANN. A framework is proposed, in 
which different networks are used for different 
ranges of rotational speeds, as sketched in the 
workflows in Figure 3 and Figure 4. In the 
training phase, 𝑛𝑛 sets of different rotational 
speeds (Ω) with defined limits 𝜔𝜔min and 𝜔𝜔max 
are used for simulation of the current signals. 
The sets are selected in a way that all possible 
speeds are covered. For each of the sets, an 
ANN is trained to detect a fault. In the 
detection phase, maximum (max), minimum 
(min) and-standard deviation (𝜎𝜎) are calculated 
for each two second record. If the variation in 
the rotational speed is relatively high, the 
frequency spectrum becomes indistinct. 
Accordingly, the standard deviation of the set 
has to go below a defined limit 𝜎𝜎𝐿𝐿 to allow 
further processing. The appropriate ANN for 
fault detection with the FFT of the current 
signal is selected with the information of the 
rotational speed extrema. 

In this paper, the feasibility of the framework is 
discussed by investigating the training of one 
network for a limited rotational speed variation. 

2.3 Simulation study 
In a first simulation study the ability to 
differentiate between healthy and faulty stages 
is tested. The second study investigates fault 
degree detection with different fault strengths 
where the fault level has been simulated by 
increasing the magnitude of the sideband 
harmonics as an indication to the fault with 
higher level. 

2.3.1 Fault classification 
The WT model is run for healthy and faulty 
condition with a selected variable speed 
variation between 924 and 937 rpm as shown 
in Figure 5. Analysis of the real SCADA data 
suggested such a variation in 5 minutes. 

For each condition, the current signal is 
recorded for 300 seconds at 5 kHz sampling 
frequency. Periods of two seconds of data are 
selected for analysis using the Fast Fourier 
Transform (FFT) algorithm. This window length 
is identified as the shortest possible with a 
sufficient resolution to capture all harmonics of 
interest. The frequency spectrum of each 
window consisting of 250 amplitudes acts as a 
‘sample’ for ANN fault detection. All samples 
from healthy and faulty stages are mixed and 
randomly split in training and testing. A 
classification as ‘healthy’ or ‘faulty’ is trained 
with scaled conjugate gradient 

backpropagation. The number of neurons and 
training samples are varied in a sensitivity 
study. Network training is repeated a number 
of times to investigate the impact of the 
random selection of training samples. 

 
Figure 3: Workflow for training of fault 
detection algorithm. 

 
Figure 4: Workflow for fault detection after 
training. 
 

2.3.2 Fault degree detection 
Additional to the above described two 
simulations representing permanent healthy 
and faulty condition, two further runs are used 
to investigate fault development. The first 
simulation applies a linear increasing fault 
during 300 seconds. In the second run a fault 
occurs only at a certain point in the simulation. 

A fitting neural network with a tansig transfer 
function in the output layer is used to predict a 
fault degree between 0 and 1. All samples 



from the first simulation plus 100 randomly 
selected samples of the linear increasing fault 
simulation are used for training the ANN. 
Network training is repeated with identical data 
to illustrate differences resulting from 
suboptimal training. 

 

Figure 5: Rotational speed variation in 
simulation study. 

3 Results of simulation study 
3.1 Fault classification 
The results of the simulation study with current 
signals from healthy and faulty conditions are 
presented in Table 3 considering accuracy as 
correct classification of both ‘healthy’ and 
‘faulty’ stages. The median detection accuracy 
between 93.5 and 98 % for different ANN and 
training length configurations distinctly higher 
than random classification (50 % accuracy) 

shows that ANN fault detection using current 
signals under non-stationary conditions is 
feasible. 

Table 3: Accuracy of ANN condition detection 
from frequency spectrum given as median 
percentage from 250 training repetitions. 

Number 
of 

neurons 
used: 

Training 
with 100 
samples, 
testing 

with 200 
samples 

Training 
with 150 
samples, 
testing 

with 150 
samples 

Training 
with 200 
samples, 
testing 

with 100 
samples 

2 93.5 96.7 98.0 
5 94.5 96.7 98.0 
10 95.5 97.3 98.0 
25 95.5 97.3 98.0 
50 95.0 97.3 98.0 

3.2 Transient and variable fault 
detection 

Results of the transient and variable fault 
detection are presented in Figure 5 and 6. 
Although the significant differences between 
three ANNs trained with the same input 
indicate that further optimisation of training and 
algorithm settings might be reasonable, the 
general fault development is successfully 
detected. Unsurprisingly, the fault degree 
detection is less accurate than the simple 
healthy or faulty classification. Regardless, 
even the rough detection of the strength of a 
fault enables better monitoring of condition 
changes. 

 

Figure 5: ANN fault degree detection of a linear increasing fault. 



 

Figure 6: ANN fault detection of a transient fault. 

 

4 Conclusion 
A technique to detect mechanical faults in 
variable speed WTs via the CSA and ANN is 
proposed. A framework is discussed for 
training of fault detection with simulated 
signals from faults for later online detection in 
real WTs. For each set of limited rotational 
speed variation a separate ANN will detect the 
fault. 

In a simulation study of a rotor imbalance 
under varying rotational speed as expected in 
5 minutes operation the feasibility of the fault 
detection approach is demonstrated. Simple 
classification of healthy or faulty condition is 
achieved with a high accuracy. In a further 
step towards fault prognosis, the severity of 
the fault is successfully detected. 

Future work has to be done to validate the 
fault detection algorithm with experimental 
data. A full test of the proposed framework has 
to be conducted including different sets of 
rotational speed variation. In terms of fault 
prognosis, optimisation of the ANN settings 
might increase the fault degree detection 
accuracy. 
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