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Summary   

As offshore wind turbines increase in physical size and capacity and operate in remote 
locations and harsh environments, the need for high reliability and low O&M costs is higher 
than for on-shore applications. Proactive maintenance strategies must be adopted if wind 
energy is to achieve a reduced cost of energy and such a maintenance strategy requires 
detection, diagnosis and prognosis information. For these reasons the development of 
reliable condition monitoring systems for wind turbines is essential to avoid catastrophic 
failures and to minimize costly corrective maintenance. Condition monitoring allows early 
detection of any degeneration in system components, facilitating a proper asset 
management decision, improving availability, minimizing downtime and maximizing 
productivity.  

The work on this deliverable focuses on the research undertaken in developing practical 
condition monitoring approaches for electrical and mechanical drive train faults, with an 
emphasis on the higher impact subassemblies such as the generator, gearbox and power 
converter. The papers and chapter book in this deliverable discuss the application of novel 
monitoring sensors and signal processing algorithms that have been developed within the 
Supergen Wind Hub Work Package 4. Where possible advanced analytical models are 
validated against laboratory test-rig experimental results. 

The deliverable is comprised of a number of papers published and submitted by Durham 
University, the University of Manchester and Loughborough University. The 13 journal 
publications are supported by a further 4 conference papers and a book chapter. Of these 18 
publications, the 13 journal papers are discussed in this introduction. Note that two of these 
papers are still under review so are not finalised. All the 17 journal and conference papers 
are attached.  

Paper 1:  Brigham, K., Zappalá, D., Crabtree, C.J. & Donaghy-Spargo, C. (UNDER REVIEW). 
Simplified Automatic Fault Detection in Wind Turbine Induction Generators. 
Wind Energy. 

This paper presents a simplified automated fault detection scheme for wind turbine 
induction generators with rotor electrical asymmetries. Fault indicators developed in 
previous works have made use of the presence of significant spectral peaks in the upper 
sidebands of the supply frequency harmonics; however, the specific location of these peaks 
may shift depending on the wind turbine speed. In this work, a method is proposed to 
bypass the issue of shifting frequency peaks by introducing a set of bandpass filters designed 
to capture the fault-related spectral information to train a classifier for automatic fault 
detection, regardless of the specific peak location. Experimental results show that this 
approach is robust against variable speeds, and further shows good generalisability in being 
able to detect faults at speeds and conditions that were not presented during training.  

Paper 2:  Zhang, G., Zappalá, D., Crabtree, C.J., Donaghy-Spargo, C., Hogg, S. & Duffy, A. 
(UNDER REVIEW). Validation of a non-contact technique for torque 
measurements in wind turbines using an enhanced transient FSV approach. 
Measurement. 

In-service turbine monitoring is essential for maximizing the wind energy contribution to the 
global energy budget. Measurement of turbine shaft torque under transient wind conditions 
is fundamental to develop reliable condition monitoring techniques. Contact based 
measurements bring their own disadvantages and non-contactless measurements have 
many potential advantages. However, their performance needs to be validated against 
standard methods. This paper focuses on enhanced transient FSV (Feature Selective 
Validation) techniques developed to undertake this analysis with an emphasis on transient 
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data processing. The FSV method is a reliability function-like heuristic, initially developed for 
validation of electromagnetic compatibility simulations. Open questions have existed for 
some time as to how transients should be dealt with. This paper (a) overcomes the 
limitations of previous approaches for step-function transient comparison and (b) presents 
analytical methods where the comparison is dominated by the transient function itself and 
not the length of the pre- and post-transient periods. 

Paper 3:  Zappalá, D., Crabtree, C.J. & Hogg, S. (2019). Investigating Wind Turbine 
Dynamic Transient Loads Using Contactless Shaft Torque Measurements. The 
Journal of Engineering 18: 4975-4979. https://doi.org/10.1049/joe.2018.9361 

Accurate and reliable drive train mechanical torque measurements can be a very informative 
input for enhancing wind turbine condition monitoring capabilities as well as for adopting 
proactive solutions for extreme load mitigation. This work is significant because it 
experimentally investigates shaft dynamic, transient loads through a novel contactless 
torquemeter designed by the Authors. The implementation of the proposed sensor in the 
field would allow direct, cheap, real-time measurements of wind turbine drive train loads. 
This method allows to overcome the current limitations of the industrial implementation of 
torque measurements for performance monitoring, condition monitoring and control 
purposes. This paper was originally presented at the 7th IET International Conference on 
Renewable Power Generation (RPG 2018).  

Paper 4:  Smith, C.J., Zappalá, D., Crabtree, C.J., Lapiedra, J. & Mulholland, B. (2019). 
Power Converter Junction Temperature Measurement using Infra-red Sensors. 
The Journal of Engineering 17: 4452-4456. 
https://doi.org/10.1049/joe.2018.9361 

Studies demonstrate that the power converter has one of the highest failure rates in a wind 
turbine, with a key failure driver being the power module junction temperature (Tj). This 
paper details an experimental setup for simplified emulation of wind turbine conditions on a 
power converter with infra-red sensing of IGBT Tj. Results are compared to previous 
simulation work for a PMSG wind turbine, with the same trend of increasing mean Tj with 
wind speed found, and the need to use an equivalent generator reactance in highlighted. A 
commercial-scale prototype for more accurate wind turbine converter emulation is also 
detailed. This paper was originally presented at the 9th IET International Conference on 
Power Electronics, Machines and Drives (PEMD 2018). 

Paper 5:  Sarma, N., Tuohy, P. M., Djurović, S. (2019). Modeling, Analysis and Validation 
of Controller Signal Interharmonic Effects in DFIG Drives. IEEE Transactions on 
Sustainable Energy (Early access). https://doi.org/10.1109/TSTE.2019.2904113 

This paper presents the development of a doubly fed induction machine (DFIG) harmonic 
model in MATLAB/Simulink, which is used to examine the spectral content of DFIG controller 
signals and improve the understanding of their behavior and spectral nature. The reported 
DFIG harmonic model has the capability of representing the effects of higher order time and 
space harmonics and thus, allows detailed analysis of the controller signals embedded 
spectral effects. The model consists of a wound rotor induction machine (WRIM) harmonic 
model coupled with a stator flux oriented controller (SFOC) model. The WRIM space 
harmonic effects are represented using the conductor distribution function approach to 
enable the calculation of winding inductances as harmonic series. In addition, analytical 
expressions are derived to define the possible spectral content in the controller signals of 
DFIGs. Both the reported DFIG harmonic model and the analytical equations are validated by 
comparison with measurements taken from a purpose built vector controlled DFIG 
laboratory test-rig. The findings confirm the capability of the developed DFIG harmonic 
model in representing the controller signals embedded spectral effects, as well as the 

https://doi.org/10.1049/joe.2018.9361
https://doi.org/
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accuracy of the reported analytical expressions, and enable a much improved understanding 
of the spectral nature of the DFIG controller signals 

Paper 6:  Zappalá, D., Sarma, N., Djurović, S., Crabtree, C. J., Mohammad, A. & Tavner, P. 
J. (2019). Electrical & Mechanical Diagnostic Indicators of Wind Turbine 
Induction Generator Rotor Faults. Renewable Energy 131: 14-24. 
https://doi.org/10.1016/j.renene.2018.06.098 

One of the main challenges currently facing the wind industry is to improve the reliability of 
diagnostic decisions, including component fault severity assessment. Generators make a 
significant contribution to wind turbine downtime. This paper presents a modelling and 
experimental investigation of electrical and mechanical signatures for wind turbine 
generators, identifying the best diagnostic reliability condition monitoring indicators. This is 
significant because it represents the first occasion in which such comprehensive approach 
has been presented for wind turbine induction generators, with healthy and faulty 
conditions at varying loads and level of fault.  

Paper 7:  Sarma, N., Tuohy, P. M., Apsley, J. M., Wang, Y., Djurović, S. (2018). DFIG stator 
flux-oriented control scheme execution for test facilities utilising commercial 
converter. IET Renewable Power Generation 12(12): 1366-1374. 
https://doi.org/10.1049/iet-rpg.2018.5195 

The utilisation of conventional industrial converters for development of doubly-fed induction 
generator (DFIG) test facilities poses an attractive prospect as it would provide proprietary 
commercial protection and functionality. However, standard commercial converters present 
significant challenges in attainable DFIG operational capability. This is due to the fact that 
they are designed for execution of a limited set of pre-programmed common control modes. 
They typically do not cater for execution of complicated stator flux-oriented vector control 
(SFOC) schemes required for DFIG drive control. The research work presented in this study 
reports a methodology that enables effective implementation of SFOC on industrial 
converters through a dedicated external real-time platform and a velocity/position 
communication module. The reported scheme is validated in laboratory experiments on an 
experimental DFIG test-rig facility. The presented principles are general and are therefore 
applicable to conventional DFIG drive architectures utilising standard industrial converters. 

Paper 8:  Ibrahim, Raed K., Watson, Simon J., Djurović, Siniša & Crabtree, Christopher J. 
(2018). An Effective Approach for Rotor Electrical Asymmetry Detection in 
Wind Turbine DFIGs. IEEE Transactions on Industrial Electronics 65(11): 8872-
8881. https://doi.org/10.1109/TIE.2018.2811373 

Determining the magnitude of particular fault signature components (FSCs) generated by 
wind turbine (WT) faults from current signals has been used as an effective way to detect 
early abnormalities. WTs frequently operate close to the generator synchronous speed, 
resulting in FSCs manifesting themselves in the vicinity of the supply frequency and its 
harmonics, making their detection more challenging. To address this, the detection of rotor 
electrical asymmetry in WT generators has been investigated experimentally and an 
effective extended Kalman filter (EKF) based method is proposed to iteratively track the 
FSCs. The proposed approach has been compared with a continuous wavelet transform 
(CWT) and an iterative localized discrete Fourier-transform (IDFT). Experimental results 
demonstrate that the CWT and IDFT algorithms fail to track the FSCs at low load operation 
near-synchronous speed. In contrast, the EKF was more successful in tracking the FSCs 
magnitude in all operating conditions, unambiguously determining the severity of the faults 
over time and providing significant gains in both computational efficiency and accuracy of 
fault diagnosis. 

Paper 9:  Zappalá, D., Bezziccheri, M., Crabtree, C.J. & Paone, N. (2018). Non-intrusive 

https://doi.org/10.1016/j.renene.2018.06.098
https://doi.org/10.1109/TIE.2018.2811373
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torque measurement for rotating shafts using optical sensing of zebra-tapes. 
Measurement Science and Technology 29(6): 065207. 
https://doi.org/10.1088/1361-6501/aab74a 

This paper presents a new method to use optical sensors and patterned shafts for non-
contact measurement of torque. The paper was created from a new collaboration between 
Durham and Università Politecnica delle Marche, Ancona, Italy. Unlike state-of-the-art 
transducers, the proposed method does not require costly embedded sensors, electronics or 
wires to be installed on the rotating shaft. Its non-intrusive nature, adaptable design, simple 
installation and low cost make it suitable for a large variety of advanced engineering 
applications. The paper was picked up by the Italian wind turbine manufacturer MAIT, who 
are in discussions with the Authors about full-scale testing on an operational wind turbine.  

Paper 10:  Smith, C.J., Crabtree, C.J. & Matthews, P.C. (2017). Impact of wind conditions 
on thermal loading of PMSG wind turbine power converters. IET Power 
Electronics Special Issue: Power Electronics Converters for Marine Renewable 
Energy Applications 10(11): 1268-1278. https://doi.org/10.1049/iet-
pel.2016.0802 

Power converter reliability is critical for permanent magnet synchronous generator (PMSG) 
wind turbines. Converter failures are linked to power module thermal loading but studies 
often neglect turbine dynamics, control and the impact of wind speed sampling rate on 
lifetime estimation. This study addresses this using a 2 MW direct-drive PMSG wind turbine 
model, and simulating junction temperatures (Tj) using a power module thermal equivalent 
circuit under various synthetic wind speed conditions. Responses to square wave wind 
speeds showed that the lower the gust frequency, the higher ΔTj becomes, demonstrating 
that low turbulence sites have greater thermal variation in the converter. In contrast, wind 
speed variations with frequencies >0.25 Hz deliver only small increases in ΔTj. It is concluded 
that reasonable approximations of Tj profiles can be made with 0.25 Hz wind speed data, but 
that lower data rate wind measurements miss essential, damaging characteristics. This paper 
was selected for publication after being presented at the 8th IET International Conference on 
Power Electronics, Machines and Drives (PEMD 2016). 

Paper 11:  Rieg, C. A., Smith, C. J. & Crabtree, C. J. (2016). Monitoring Wind Turbine 
Loading Using Power Converter Signals. Journal of Physics: Conference Series 
(JPCS) 749(1): 012018. https://doi.org/10.1088/1742-6596/749/1/012018 

The ability to detect faults and predict loads on a wind turbine drivetrain’s mechanical 
components cost-effectively is critical to making the cost of wind energy competitive. In 
order to investigate whether this is possible using the readily available power converter 
current signals, an existing permanent magnet synchronous generator based wind energy 
conversion system model was modified to include a grid-side converter (GSC) for an 
improved converter model and a gearbox. The GSC maintains a constant DC link voltage via 
vector control. The gearbox was modelled as a 3-mass model to allow faults to be included. 
Gusts and gearbox faults were introduced to investigate the ability of the machine side 
converter (MSC) current (Iq) to detect and quantify loads on the mechanical components. In 
this model, gearbox faults were not detectable in the Iq signal due to shaft stiffness and 
damping interaction. However, a model that predicts the load change on mechanical wind 
turbine components using Iq was developed and verified using synthetic and real wind data. 
This paper was originally presented at the WindEurope Summit 2016.  

Paper 12:  Zappalá, D., Tavner, P.J., Crabtree, C.J. & Sheng, S. (2014). Side-band algorithm 
for automatic wind turbine gearbox fault detection and diagnosis. IET 
Renewable Power Generation 8(4): 380-389. https://doi.org/10.1049/iet-
rpg.2013.0177 

https://doi.org/10.1088/1361-6501/aab74a
https://doi.org/10.1049/iet-pel.2016.0802
https://doi.org/10.1049/iet-rpg.2013.0177
https://doi.org/10.1049/iet-rpg.2013.0177
https://doi.org/10.1049/iet-pel.2016.0802
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This paper, originally presented at the 2013 European Wind Energy Association Conference, 
was recommended by the Session Chairs & Co-Chairs for submission to a special issue of the 
IET Renewable Power Generation Journal. The paper experimentally investigates a fault 
detection algorithm for wind turbine gearbox, which has been shown to cause the longest 
machine downtime. This work is significant because it allows automatic data interpretation, 
timely detection and diagnosis of developing wind turbine gear defects. The experimental 
outcomes were validated using the Round Robin project data provided by the National 
Renewable Energy Laboratory (NREL). 

Paper 13:  Zaggout, M. N., Tavner, P. J., Crabtree, C. J. & Ran, L. (2014). Detection of Rotor 
Electrical Asymmetry in Wind Turbine Doubly-Fed Induction Generators. IET 
Renewable Power Generation 8(8): 878-886. https://doi.org/10.1049/iet-
rpg.2013.0324 

This study presents a novel method for detecting rotor faults in wind turbine doubly-fed 
induction generators (DFIGs), controlled by a stator field-oriented vector control scheme. 
Rotor electrical asymmetry faults are identified from the rotor-side inverter control loop, 
using the error signal. Simulation and experimental measurements of the proposed signals 
were carried out under steady-state operation for both healthy and faulty generator 
conditions. Stator current and power were also investigated for rotor electrical asymmetry 
detection and comparison made with rotor-side inverter control signals. An investigation 
was then performed to define the sensitivity of the proposed monitoring signals to fault 
severity changes and a comparison made with previous current, power and vibration signal 
methods. The results confirm that a simple spectrum analysis of the proposed control loop 
signals gives effective and sensitive DFIG rotor electrical asymmetry detection. 
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Abstract
This paper presents a simplified automated fault detection scheme for wind turbine induction
generators with rotor electrical asymmetries. Fault indicators developed in previous works have
made use of the presence of significant spectral peaks in the upper sidebands of the supply fre-
quency harmonics; however, the specific location of these peaks may shift depending on the
wind turbine speed. As wind turbines tend to operate under variable speed conditions, it may
be difficult to predict where these fault-related peaks will occur. To accommodate for variable
speeds and resulting shifting frequency peak locations, previous works have introducedmethods
to identify or track the relevant frequencies, which necessitates an additional set of processing
algorithms to locate these fault-related peaks prior to any fault analysis. In this work, a simplified
method is proposed to instead bypass the issue of variable speed (and shifting frequency peaks)
by introducinga setof bandpassfilters that encompass the ranges inwhich thepeaks areexpected
to occur. These filters are designed to capture the fault-related spectral information to train a
classifier for automatic fault detection, regardless of the specific location of the peaks. Initial
experimental results show that this approach is robust against variable speeds, and further shows
good generalisability in being able to detect faults at speeds and conditions that were not pre-
sented during training. After training and tuning the proposed fault detection system, the system
was testedon ‘unseen’ data and yielded a high classification accuracy of 97.4%, demonstrating the
efficacy of the proposed approach.
KEYWORDS:
fault detection, speed invariance, rotor electrical asymmetry, conditionmonitoring

1 INTRODUCTION
Reliable and efficient condition monitoring (CM) techniques play a crucial role in minimizing wind turbine (WT) operation andmaintenance (O&M)
costs for competitive development of offshore wind energy 1. Current efforts in the wind industry are aimed at automating the data interpretation
and improving the accuracy and the reliability of the diagnostic decisions to enable condition-basedmaintenance planning 2. While alternatives are
emerging, wound rotor induction generators (WRIGs), using a partially-rated power converter connected to the rotor side, remain themostwidely-
usedmachines in wind industry formedium and large size variable speed applications 3. Reliability studies 4,5,6,7 have reported that generator faults
contribute significantly toWT downtime. Rotor electrical asymmetry, caused by brush-gear degradation, slip-ring wear/faults or winding electrical
faults, has been identified as one of the main contributors to WT generator failure rate 8,9. Undetected generator faults may have a catastrophic
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effect on the turbine drive train resulting in costly repairs and long downtimes. Attention at the incipient fault stage is required to avoid fault
escalation leading to breakdown.
Diagnosis methods to detect WRIG rotor failures, based on time domain and/or frequency domain techniques, have been researched exten-

sively. Motor current signature analysis (MCSA) is a well-established signal-based technique, typically using non-invasive, spectral-based machine
terminal quantity analysis, for detecting induction machine faults 10,11,12. Stator current is commonly used inMCSA since it is sensitive to the rotor
faults, and it is a suitable method to obtain a diagnostic index allowing the discrimination between faulty and healthy conditions 13. Rotor asym-
metry has been shown to induce a change in the generator stator current spectral content at slip-dependent sidebands of the dominant supply
frequency harmonic components. Closed-formanalytical expressions have beenderived as to the specific locations of these sidebands 11,14,15,16,17,18
that can be monitored for diagnostic purposes for machine operating in steady state. MCSA was expansively investigated for rotor asymmetry
detection inWRIGs under steady state conditions, ranging from analysis of experimental data only 19,20, to investigation based on both simulation
and experimental data 21,22,23.
In the WT industry, electrical-signal-based CM has been gaining increasing attention, as it requires almost no additional capital expenditure 24.

This is due to the fact that electrical signals are already available in existing WT control and protection systems and no additional sensors or
data acquisition devices are needed. However, despite the increasing concern about WT electrical component reliability and growing attention in
electrical-signal-based CM, monitoring generator electrical faults has not yet become standard practice in the wind industry. The majority of WT
CM systems (CMS) are mainly based on monitoring high-frequency vibration in gearbox and generator bearings 25. In WT time-varying operating
conditions, as the speed and then the slip changes, the frequency components associated with rotor faults are spread in a frequency range propor-
tional to the operational speed variation range. This represents one of the main limitations associated to the effective implementation of MCSA
techniques forWT generator CM as accurate information about themachine speed and specialist knowledge, with advanced signal analytics expe-
rience, are required to interpret large amounts of complexmonitoring data 3. Further to this, if themachine speed is unknown, itmay not be possible
to predict where these fault-related peaks will occur. In order to achieve a good spectral resolution, signal should be also sampled at high sam-
pling rates, requiring large memory space for data storage and processing. To use CM information successfully for optimising the O&M strategies,
systems that can automatically analyse and interpret large volumes of CMdata are required.
Recent works have dealt with the problem of WRIG rotor fault detection under non-stationary conditions. Gritli et al. 26 and Vedreño et al. 27

proposed approaches based on detecting the faults through increases in signal energy in specific frequency ranges, including the fault component
of interest. However, they rely on the use of the computationally intensive discrete wavelet transform (DWT) as filtering tool to isolate frequency
intervals of interest and require the knowledge of the machine speed to identify in which band of the DWT decomposition the fault components
appear. The harmonic order tracking analysis method presented by Sapena-Bano et al. 28 rearranges the information in the current time-frequency
spectrograms into simplified graphs displaying a unique pattern for each type of fault. However, this methodology strictly relies on the knowledge
of the rotor position in every sampling time, which is usually not available on operational wind turbines. All these approaches, besides requiring
the knowledge of themachine speed or rotor position, imply complex additional calculations to characterize themachine fault signatures for every
machine operating condition. This makes their industrial implementation difficult.
This paper proposes an automated fault detector ofWT induction generator rotor electrical asymmetry that requires minimal prior knowledge

of themachine operating conditions and is invariant to the issue of shifting slip-dependent fault-related peaks in the stator current spectral content.
Building on previous research in 14,16,17,20,23, the proposed method is a simplified but effective approach that negates the need for supplementary
processing to identify operational parameters and is based on the combination of simplified signal processing tools for feature extraction from the
machine stator current signal and the use of a linear classifier for fault detection.Unlike previousworks onAI-based algorithms for automatic induc-
tion motor fault detection, such as 29,30,31 and those reviewed in 12, tested under machine steady-state conditions, this work has been specifically
developed to improve the fault diagnostic reliability duringWT non-stationary load and speed operating conditions.
In general, the approach for developing an automated detection/classification system is to first extract a set of features from input data (e.g.,

images, speech signals), and then use these features to train a classifier 32. Subsequent data can then be classified by applying the same feature
extraction approach, and then inputting the features into the previously trained classifier to arrive at a decision about the class of the input data
(e.g., healthy or faulty), or even a categorisation of the level of the fault severity, if a fault exists. The selection of an appropriate set of features is
undoubtedly critical in this process towards implementing a successful detection system, as it is possible to extract features that do not contain
information relevant for classification. Therefore, the suitability of the proposed set of features for automated fault detection is also investigated
in this work, by applying a form of supervised dimensionality reduction to allow for both visual and numerical analyses of experimental healthy and
faulty data. The applicability of the proposed approach to detecting different fault levels is experimentally validated in a laboratory test rig.
Themain advantages of the proposedmethod are:

1. It does not require any speed measurement, and it has been experimentally validated under stationary and wind-like variable speed
conditions;
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2. It allows automatic classification of the WT generator condition without requiring expert knowledge in signal processing, significantly
reducing the large degree of manual analysis currently required and facilitating reliable diagnostics;

3. It allows fault severity discriminationproviding early generator rotor damagedetectionwarnings aspart of apredictivemaintenance regime;
and

4. It can be easily adapted to existing integratedmonitoring systems and applied remotely to automatically monitorWT electrical signatures.

2 PROPOSEDMETHODOLOGY
Previous work 14,17 has shown that WRIG rotor electrical asymmetry gives rise to additional frequency components in the stator current at
characteristic slip-dependant frequencies, fk, given by:

fk =

∣∣∣∣j ± k

p
(1− s)

∣∣∣∣ f (1)
where f is the fundamental supply frequency, s is the induction generator fractional slip, p is the machine pole pair number, k = 0, 1, 2, 3, ... and j =

0, 1, 2, 3, ... relate to air-gap field space harmonics resulting from the layout of themachine and supply time harmonics in the current, respectively.
Given these findings regarding the manifestation of significant spectral peaks due to rotor asymmetry and the variability of the peak locations

with the machine operating speed, the extracted features should incorporate information across the various frequency bands of interest. To this
end, a set of bandpass filters is proposed (hereafter referred to as a filter bank), where the cutoff frequencies of the bandpass filters are determined
based on an expected range of slip-dependent sideband peak locations, derived from both theory and actual experimentation. The average spectral
magnitude contained in each frequency band of the filter bank is computed and concatenated to form a vector of features, whose length is equal to
the number of bandpass filters.
With the introduction of these bandpass filters, any fault-related information contained within the frequency bands-of-interest can be found

without the need for any frequency tracking or identification of the relevant spectral components. Each bandpass filter is expected to cover the
range of where the relevant spectral peaks occur, and taking the average magnitude in each band reduces the spectral content contained in that
range to a single metric in which the fault-related information is naturally captured. These metrics, which will be used as the ‘features’, can then be
combined (i.e., concatenated) for usage in automatic classification.

2.1 Feature Extraction
Themathematics for computing the features from the input signals are as follows. First, the frequency domain representation of the stator current
signature is computed by taking the Discrete Fourier Transform (DFT) over a windowed data vector xw[n] = h[n] � x[n], where h[n] is a window-
ing function (e.g., a Hamming window), and x[n] is the original data sample vector sampled at frequency fs (Hz) over a window sample time of Nw

(seconds).
For all data, the features are extracted using a filter bank approach on the stator current spectra whereby a set of R bandpass filters, Hr for

r = 1, ...,R, are applied (i.e., multiplied by the spectrum). Each filter encompasses a frequency band of range frange = fr,max − fr,min, which can
discretely be represented as:

Hr[k] =

1, k = bfr,min · (N/fs)c, ..., bfr,max · (N/fs)c

0, otherwise
(2)

where fr,min and fr,max are the lower andupper cutoff frequencies, respectively, for the rth bandpass filter,N is the length of the signal being analysed,
where N ≥ Nw · fs (with the inequality accounting for optional zero-padding), and k ∈ N. Application of these bandpass filters is essentially an
extraction of the spectral content in the frequency range-of-interest (i.e., zeroing out the spectral content outside of the range of the bandpass filter,
while ‘passing’, or multiplying by 1, the spectral content contained within the range of the bandpass filter). Different stator current bandpass filters
are constructedunder theguidanceofworkdonebyZappalá 34, which states that in faulty spectra (compared to “healthy" spectra), higher amplitude
peaks will appear at the 2sf upper sidebands of the supply frequency harmonics hf , where h = 1, 2, 3... is the supply harmonic order. Therefore, the
filter bankwill be constructed such that each bandpass filter encompasses this 2sf upper sideband of each supply frequency harmonic order h:

fr,min = hf + fshift; and (3)
fr,max = hf + fshift + frange (4)

where fshift marks the start of the bandpass filter. The frequency range containing the sideband peaks, frange, can be computed from the expected
machine operational speed range. Note that while there could be an equivalence of r ≡ h if there is a filter for each harmonic, in some cases it may
not be necessary to have filters placed at each harmonic so that r 6= h 23 .
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From the frequency spectra computed from each windowed signal, a feature vector, v, will be constructed with each element in the vector v[r]
representing information from each bandpass filter, and is generated by the following equation:

v[r] =
1

k2 − k1 + 1

k2∑
k=k1

X[k]Hr[k] (5)

where k1 = bfr,min (N/fs)c and k2 = bfr,max (N/fs)c (i.e., the start and stop indices of the range in which the filter is nonzero), and v[r] ∈ <R. In this
feature extraction approach, note that there are several parameters that can be varied:
• Length of the analysis timewindow;Nw

• Number of bandpass filters (interested harmonics);R

• Frequency range of the bandpass filters; frange

During experimentation, these parameters will be tuned (i.e., the ‘best’ values will be determined) by classifying the data using a held-out
development set (not to be used in testing), in part to quantify the effects of these parameters on the resulting classifications.

2.2 Dimensionality Reduction and Classification
To investigate the suitability of these features for automatic fault detection, Fisher’s Linear Discriminant (FLD) will be applied to the features since
its usage permits visualisation of the proposed features in a lower dimensional subspace, and can help identify whether or not a distinct separation
between healthy and faulty data can be attained. Note that although FLD is used and discussed herein, other popular classifiers such as Support
Vector Machines or Artificial Neural Networks could also easily be applied, but the choice of classifier is not the primary focus of this work. FLD is
merely used as a tool here to investigate the feasibility and demonstrate the efficacy of the proposed feature extraction approach. With FLD, the
ability to achieve the desired distinctive separations can also be further analysed to determinewhether or not such linear classifiersmay be capable
of detecting faults at multiple levels (e.g., the fault detector should ideally be capable of detecting various levels of rotor imbalances). FLD further
provides an added benefit of dimensionality reduction, as the application of FLD computes a linear function of the input data as follows:

y = wTv (6)
where y is the (one-dimensional) FLD output, w is an R-dimensional weight (i.e., projection) vector, and v is an R-dimensional input vector (e.g.,
a feature vector derived from an input data sample). The weight vector w is determined using labelled ‘training’ data to solve an optimisation
problem that minimises thewithin-class variability (i.e., spread of the data) and maximises the between-class separation of the projected output data.
A derivation of FLDwill be described here to provide additional details on how FLDworks.
Mathematical representations should first be defined for twoquantities-of-interest: thewithin-class variability and the between-class separationof

the resulting projected FLD outputs.While FLD has a multi-class variant 32, for simplicity, the following description of FLDwill be restricted to two
classes. Thewithin-class variability of the projected output from Equation (6) will be denoted asSp

k and can be defined as the total sample variance,
which is given by 32:

Sp
k =

∑
n∈Ck

(
yn −mp

k

)2 (7)

whereyn is the projected data point of the nth input vector for n ∈ Ck, whereCk is the class, and k = {1, 2} is the class index, andmp
k is themean of

the set of projected data points for classCk.
The between-class separation of the projected data for classesC1 (i.e., class 1) andC2 (i.e., class 2) will be denoted asmp

12, and can be defined as
a distance between themeans of the projected data from each class:

mp
12 =

(
mp

1 −mp
2

)2 (8)
wheremp

1 andmp
2 are themeans of the projected data belonging toC1 andC2, respectively, and are computed using their respective samplemean:

mp
k =

1

Nk

∑
n∈Ck

yn (9)

where Nk is the number of samples in class Ck. To both maximise the between-class separation and minimise the within-class variability, a ratio
between the twomeasures can be constructed to formulate the following optimisation function 32 forw, theR-dimensional weight (i.e., projection)
vector:

J(w) =

(
mp

1 −mp
2

)2
Sp
1 + Sp

2

(10)
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FIGURE 1 Schematic diagram of the wind turbine conditionmonitoring test rig 34.

where Sp
1 and Sp

2 are the variances of the projected data belonging to classes C1 and C2, respectively. The projected means and variances on the
right-hand side of Equation (10) can be rewritten in terms of the original data and the weight vectorw (making the dependence of the function on
the weight vector explicit) to obtain the following final form of the desired optimisation function:

J(w) =
wT (m1 −m2) (m1 −m2)

T w

wTSWw
(11)

wherem1 andm2 are the samplemeans of the input data (feature vectors) and are given by:
mk =

1

Nk

∑
n∈Ck

vn for k = 1, 2 (12)

wherevn is from Equation (6) but explicitly for n ∈ Ck, andSW is the totalwithin-class covariance:
SW =

∑
n∈C1

(vn −m1) (vn −m1)
T +

∑
n∈C2

(vn −m2) (vn −m2)
T (13)

Maximizing J(w) from Equation (11) with respect tow results in the following closed-form solution forw 32:
w = S−1

W (m1 −m2) (14)
An optimal threshold for separating the classes after applying Equation (6) to the input (i.e., training) data using the weight vectorw found from
Equation (14) can subsequently be determined from the resulting input data projections.

2.3 Experimental Rig andData Curation
The proposed approachwas tested using data collected from a small scale conditionmonitoring test rig used forWTdrivetrain analysis. The rigwas
designed to act as a model for a WT drive train with the purpose of producing signals comparable to those encountered on an operational WT. It
features a 54 kWDCmotor, operated as a primemover and simulating theWT rotor input, driving an industrial 4-pole, three-phase, 50 Hz, 30 kW
WRIG. The WRIG is driven at either constant speed or non-stationary, variable speed conditions, to reflect the stochastic effects of wind torque
driving, via a commercial DCmachine drive. A schematic diagram of this experimental facility is shown in Fig. 1 and two photographs are shown in
Fig. 2.
Details of the test rig are given in 33 and 34. Seeded-fault conditions can be induced or removed from the test rig drive train as required enabling
several electrical andmechanical faults to be implemented repeatedly on demand and under controlled driving conditions.
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FIGURE 2Wind turbine conditionmonitoring test rig: main components, instrumentation and control systems 34.

Rotor electrical asymmetry was simulated on the test rig WRIG by using a resistive load bank externally connected to the rotor circuit via the
machine slip-rings to vary the resistance into one rotor phase winding circuit. For experimental purposes, to represent the development of rotor
electrical faults on an induction generator, such as brush-gear or slip-ringwear, two seeded-fault levels were implemented on the test rig by succes-
sively adding two additional external resistances of 0.3Ω and 0.6Ω, respectively, to phase 1 of the rotor circuit through the external load bank. The
corresponding levels of rotor electrical asymmetry, given as a percentage of the rotor balanced phase resistance, were 21% and 43%, respectively.
These values compare very favourably with other studies 17,21.
Data was collected at both steady-state speeds, ranging from 1520 rpm to 1600 rpm, and at wind-like variable speeds. In each constant speed

test the rig was driven for 300 seconds, while in each variable speed test it was driven for 450 seconds to allow for sufficient data acquisition.
Variable speed machine testing was performed according to speed profiles derived from a 2MWvariable speedWTmodel. This model, developed
by the University of Strathclyde, as part of the SUPERGENWind Energy Technologies Consortium, incorporates the properties of natural wind and
themechanical behaviour of a 2MWvariable speedWT operating under closed-loop conditions 33.
A variety of wind speeds and turbulence intensities, defined as the measure of the overall level of turbulence 35, were applied to the model. The

driving conditions were then scaled to the test rig based on the generator speed data from the model as described in detail in 33. The use of the 2
MWvariable speedWTdrivingmodel has allowed the simulation of the different dynamic speed behaviors that a full-sizeWT4-pole DFIG exhibits
both below and above rated wind speed. The scaled generator variable speed signals used for testing, shown in Fig. 3, are:

1. 7.5 m/s mean, 6% turbulence intensity, representative of a low mean wind speed with low turbulence, with the WT operating at or below
ratedwind speed under generator speed control (hereafter denoted as ‘7.5m6t’); and

2. 15m/s mean, 20% turbulence intensity, representative of a highmeanwind speed with high turbulence, with theWT operating above rated
wind speed under blade pitch control (hereafter denoted as ‘15m20t’). During the experiments, the signal acquisition of the stator line cur-
rents has been performed using a NI 6015 data acquisition pad at a rate of 5 kHz. The pad is in turn connected, via shielded USB connection,
to theNI LabVIEWenvironmentwhich also operates as control environment of the rig.Only one line current signal is presented andanalysed
here, as is usually the case forMCSA 33.

Threemain sets of experimental datawere curated and processed in thiswork that encompass a set of constant speeds spread across the experi-
mental range and also includes variable-speed data. Table 1 shows the details of each experimental dataset. TrainSet is used to train FLD, DevSet is
used to determine reasonable feature extraction parameters using the trained FLDweight vector, and EvalSet is used to test the final fault detec-
tion system. Note that EvalSet is never used during training or “development" phase (during which the system parameters are tuned); the idea is
that at least one dataset should be held out to test the generalisability of the proposed detection system (i.e., how does the detection system per-
form on never-before-seen data). Also of note is that during training, only the ‘healthy’ and ‘21% rotor asymmetry’ data is used. This is to test how
well the proposed fault detector can distinguish between different levels of fault (e.g., ‘43% rotor asymmetry’) even when the different fault levels
are not present in the training data.

3 RESULTS ANDDISCUSSION
A single line current stator signal, captured using appropriate measurement hardware on the 30 kW test rig, has been used in the study of the
proposed approach to WRIG fault detection. With an expected range of speeds between 1520-1600 rpm, each bandpass filter was designed to
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FIGURE 3Wind turbine conditionmonitoring test rig variable speed test conditions 34.

TABLE 1 Speed and fault level details for the three curated datasets.

Dataset Speed (rpm) Fault Level
TrainSet 1520 none(healthy)

21% rotor asymmetry

DevSet

1525
1540
1553
1585
1600 none (healthy)
variable (7.5m6t) 21% rotor asymmetry

EvalSet

1530 43% rotor asymmetry
1555
1565
1590
variable (15m20t)

start at each supply frequency harmonic + 1 Hz (i.e., for this set of experimental data, fshift = 1Hz) and have an frange of 7 Hz, to capture the upper
sideband. The number of bandpass filters used was initially (arbitrarily) selected to be 10 (i.e., one filter is placed at the upper sideband of the 1st
through 10th supply frequency harmonics), along with a timewindow ofNw = 10s.
After extracting the proposed set of features and training the classifier, the training data (i.e., TrainSet) was projected to determine an appro-

priate threshold for classifying ‘healthy’ and ‘faulty’, whichwas selected as the halfway point between themeans of each projected class. Numerical
measures of the system performance were taken to be the system accuracy (i.e., the percentage of correctly identified samples) and the false pos-
itive rate (FPR) (i.e., the false ‘alarm’ rate), which is computed as the number of ‘healthy’ samples incorrectly categorized as ‘faulty’ over the total
number of samples that were determined to be ‘faulty’. The FPR is reported in addition to the system accuracy, as it is an important measure in
health monitoring, since declaring a fault when the system is healthy would likely result in unnecessary expenditure of time and money to investi-
gate a non-issue, and the FPR should be extremely low. The resulting classifications for the DevSet (categorizing both ‘21%’ and ‘43%’ as faulty) are
shown in Table 2 for the initially selected feature extraction parameters.

TABLE 2 DevSet accuracy and FPR for the initial set of feature extraction parameters.

Feature Extraction Accuracy False Positive Rate
Parameter Value (FPR)
Timewindow 10s

98.8% 1.2%# filters 10
Freq. range 7Hz
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The initial systemaccuracy and theFPRshowtheefficacyof theproposed solution indetecting faults in the stator current spectra as the resulting
accuracy is quite high with a low false positive rate. However, it may be possible to achieve better system performance by ‘tuning’ the feature
extraction parameters described in Section 2.1. Tables 3–5 show the system performance results for varying the length of the time window, the
number of bandpass filters, and the frequency range of the bandpass filters, respectively.

TABLE 3 DevSet accuracy and FPRwhen varying the length of the timewindow.

Feature Extraction Accuracy False Positive Rate
Parameter Value (FPR)

Timewindow

1 s 76.6% 24.6%
3 s 75.3% 5.9%
4 s 83.2% 5.1%
5 s 98.8% 1.5%
7 s 98.8% 1.1%
10 s 98.8% 1.2%

TABLE 4 DevSet accuracy and FPRwhen varying the number of bandpass filters.

Feature Extraction Accuracy False Positive Rate
Parameter Value (FPR)

# filters

1 81.6% 21.7%
2 84.7% 18.7%
5 96.2% 5.4%
7 96.6% 2.0%
10 98.8% 1.1%
15 98.8% 1.1%
20 99.4% 0.9%
25 85.8% 1.4%

TABLE 5 DevSet accuracy and FPRwhen varying the frequency range of the bandpass filters.

Feature Extraction Accuracy False Positive Rate
Parameter Value (FPR)

Freq. range
5Hz 69.2% 7.3%
7Hz 99.4% 0.9%
9Hz 89.8% 8.0%

Note that in Table 5 the lower cutoff frequency (i.e., the supply harmonic + 1 Hz) is the same for all frequency ranges; it is only the higher cutoff
frequency that is varied. For the other parameters:

• in Table 3, 10 bandpass filters were usedwith a frequency range of 7 Hz each (i.e., initially selected feature extraction parameters);

• in Table 4, a 7 s timewindowwas used, as this yielded a ‘best’ result shown in Table 3, and each filter had a frequency range of 7 Hz;

• in Table 5, a 7s timewindowwas usedwith 20 bandpass filters, as this yielded a ‘best’ result shown in Table 4.
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FIGURE 4 FLD projection of the average spectral magnitudes of the stator current spectra computed in each bandpass filter for the DevSet

containing speeds ranging from 1525-1600 rpm, and a variable-speed dataset.

The resulting FLD projections for the DevSet are shown in Fig. 4. These features were extracted using a 7 second time window and 20 bandpass
filters with a frequency range of 7 Hz. A clear delineation between the healthy and faulty data can be seen. Of interest is also the faulty data with
43% rotor asymmetry can be seen at even a different level (i.e., range of projected values) compared with the ‘21% rotor asymmetry’ data even
though the ‘43%’ data was not included during training. This result further highlights the potential of the proposed approach to be generalised to
detect alternate fault levels beyond those present during training.
Lastly, the proposed approach was tested on the remaining held-out EvalSet without any further system tuning. The resulting system perfor-

mance is shown in Table 6, and the FLD projections for the EvalSet are shown in Fig. 5. Again, these features were extracted using a 7 second time
window and 20 bandpass filters with a frequency range of 7 Hz.

TABLE 6 EvalSet accuracy and FPR for the final selected set of feature extraction parameters.

Feature Extraction Accuracy False Positive Rate
Parameter Value (FPR)
Timewindow 7s

97.4% 3.6%# filters 20
Freq. range 7Hz

The accuracy still remains relatively high, although the FPR has a significant increase. It can be seen in Fig. 5 that one particular set of test data
included in the EvalSet (namely the data on the left-hand side of Fig. 5, which was collected at 1530 rpm) does not exhibit as much of a separation
between classes as can be seen in the rest of the EvalSet data. It is possible that the data collected at this particular speed containsmore noise than
the others; future investigationsmay include noise reduction techniques and further analyses on potential overfitting.
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FIGURE 5 FLD projection of the average spectral magnitudes of the stator current spectra computed in each bandpass filter for the EvalSet
containing speeds ranging from 1530-1590 rpm, and a variable-speed dataset.

4 CONCLUSIONS
This paper proposes an automatedWT induction generator fault detector that does not require frequency tracking or identification. The proposed
methodology has been validated experimentally on a WT drive train test rig with two rotor fault levels under both constant and variable speed
driving conditions, representative ofWT generator field operation. The following specific conclusions arise:

• A set of bandpass filters is proposed to capture the stator current fault-related spectral information and to train a classifier, making the
approach independent on themachine instantaneous speed.

• Unlike previous studies based on the analysis of single speed-dependent fault-related frequencies in stator current, thiswork ismore robust
as it draws information frommultiple frequency components into a single fault indicator.

• The proposed approach can provide clear differentiation between healthy and faulty conditions, under both constant and variable speed
operating conditions, even though the classifier has been only trained on a single fault level and a single constant speed condition.

• Experimental results have initially shown clear discrimination between fault levels, with an almost linear response, even at variable speed.
This suggests the ability of the proposed approach to provide early fault detection of developing damage, crucial for effective maintenance
optimization.

• The developed method can be easily implemented intoWT CMSs for efficient real-time analysis of data captured without requiring expert
knowledge.

Futurework in this area includes further investigations into the robustness of the proposed approach, including the impact of different training data
(e.g., training under variable-speed conditions) on the ability to differentiate between different fault levels and healthy data. A comparative study
using other classification approachesmay also be undertaken as these different training conditions are explored.
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Abstract:  10 
 11 

In-service turbine monitoring is essential for maximizing the wind energy contribution to the global 12 

energy budget. Measurement of turbine shaft torque under transient wind conditions is fundamental to 13 

develop reliable condition monitoring techniques. Contact based measurements bring their own 14 

disadvantages and non-contactless measurements have many potential advantages. However, their 15 

performance needs to be validated against standard methods. This paper focuses on enhanced transient 16 

FSV (Feature Selective Validation) techniques developed to undertake this analysis with an emphasis 17 

on transient data processing. The FSV method is a reliability function-like heuristic, initially developed 18 

for validation of electromagnetic compatibility simulations. Open questions have existed for some time 19 

as to how transients should be dealt with. This paper (a) overcomes the limitations of previous 20 

approaches for step-function transient comparison and (b) presents analytical methods where the 21 

comparison is dominated by the transient function itself and not the length of the pre- and post- 22 

transient periods. 23 

 24 
Keywords: Torque measurement, Wind Turbine, Transient analysis, Feature Selective Validation. 25 

 26 

Declarations of interest: none 27 

1. Introduction 28 

As large-scale wind farms move further offshore, cost effective condition monitoring (CM) plays 29 

a crucial role in minimizing wind turbine (WT) operations and maintenance costs for a competitive 30 

development of wind energy [1,2]. WT component faults have usually distinguishable torque 31 

signatures and therefore can be diagnosed by using torque signals [3]. As the loading on the WT 32 

drive train components is highly variable, the study of transient conditions is fundamental to the 33 

development of reliable CM techniques. The potential benefits of adopting CM techniques based 34 

on WT mechanical torque measurement have been shown for the detection of generator electrical 35 

faults [4,5], drive train mass imbalance [6], gearbox failures [7], blade mass imbalance and 36 

aerodynamic asymmetry [8,9]. However, torque measurement on such large, inaccessible 37 

machines is impractical and economically infeasible, mainly due to limitations of the intrusive 38 

mailto:donatella.zappala@durham.ac.uk
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specialized equipment currently available. A contactless measurement system for direct, low-cost 39 

real-time measurement of WT drive train loads and speed has been presented in [10]. Unlike 40 

conventional in-line torque transducers [11-13], the proposed contactless measurement system 41 

does not require costly intrusive sensors and it can be designed to be fitted or retrofitted on any 42 

shaft diameter and material without mechanical interference. Its performance and accuracy have 43 

been experimentally demonstrated under dynamic, transient loads through conventional visual 44 

comparison and signal root mean square error (RMSE) calculations against measurements from an 45 

intrusive reference state-of-the art transducer [14]. This paper further validates the proposed 46 

contactless technique through an objective, quantified, comparison of the transient load and speed 47 

measurements based on an enhanced transient FSV (Feature Selective Validation) approach. 48 

It is known that visual evaluation is the most subtle and widely used method of data comparison 49 

and validation [15,16]. Meanwhile, visual assessment is prone to many types of physical and 50 

psychological influences. For these reasons, the FSV method was established to support the 51 

validation of electromagnetic models by quantifying the agreement between the reference and the 52 

numerical results. Where the aim was to mirror, as far as possible, the opinion of a large group of 53 

expert users as a whole. This method has been incorporated as the central technique of IEEE STD 54 

1597.1 and its associated Recommended Practice Guide, 1597.2 [17,18]. The details of the FSV 55 

method can be found in [19,20]. 56 

The FSV method was originally designed using a reliability function approach to overcome some 57 

of the key problems associated with validation of computational electromagnetic simulations for 58 

EMC (Electromagnetic Compatibility) problems. Key amongst those problems is that the 59 

complexity of the systems being analysed resulted in line graph data of, for example, the level of 60 

coupling versus frequency, which might have a serpentine envelope but many resonant-like 61 

features. The challenge was then further compounded by the challenges of the fact that simplifying 62 

assumptions are often required in the design of the simulations coupled with the fact that many of 63 
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the experts would interpret the data slightly differently based on their backgrounds and 64 

expectations (for example, someone from an EMC measurement background may have a different 65 

interpretation of what ‘good agreement’ might be compared to someone from a radiofrequency 66 

design background). As a result, the FSV method provides a ‘probability’ density function that 67 

closely resembles that derived from a group of experts. From this, a mean or mode can be obtained 68 

to summarize the view of experts [16]. The original formulation was based on the comparison of 69 

x-y data with no meaning derived from the units of either axis. Data in the time domain was equally 70 

comparable with the standard method. A significant short-coming of the original FSV formulation 71 

was that the length of time included in the pre- and post-transient phases could inadvertently (or 72 

purposely) dominate the transient itself. A further shortcoming was identifying the start and end of 73 

the transient (for the purposes of comparison).  74 

Meanwhile, the validation of transient data has become an increasingly interesting issue from the 75 

perspectives of FSV being used outside its ‘home’ domain of EMC, such as in Signal Integrity or, 76 

as is the case in this paper, health monitoring of equipment. A transient FSV algorithm was 77 

developed which looked at impulsive-like transients but was insufficient to adequately capture the 78 

effects of switching or step-like transients. However, for the emulated torque data of wind turbines, 79 

the comparison between step-function transients is essential and a new challenge for the FSV 80 

method. This paper develops the generalized FSV method to include an approach that satisfies the 81 

step-function requirements to allow transient data to be compared using standard FSV method.  82 

The structure of this paper is as follows. In Section 2, the basic algorithms of FSV and the problems 83 

of transient FSV are reviewed. The generalized transient FSV approach is presented and validated 84 

in section 3. The proposed method is applied to emulated wind turbine torque data in Section 4. 85 

2. Overview of the FSV Technique 86 

2.1.  Standard FSV method 87 
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The FSV method is based on decomposing the original comparison data, providing component-88 

based comparison and recombining those measures into an overall quality metric. Of course, the 89 

application could dictate that only a sub-set of the data may be relevant but, in general, the complete 90 

(global) comparison is used.  91 

With reference to Figure 1, which provides a graphical demonstration of the ‘data flow’. The 92 

original data for comparison (Fig. 1(a)) is not required to conform to a particular set of axes: the 93 

method is domain-agnostic and so the data is shown with no x-axis or y-axis labelled to emphasize 94 

this.  Three figures of merit are obtained to demonstrate data agreement from different perspectives 95 

in the FSV method. The Amplitude Difference Measure (ADM), Figure 1(b) shows the ‘trend’ 96 

difference, while the Feature Difference Measure (FDM), Figure 1(c), denotes the differences of 97 

details. Then the ADM and FDM are combined to give the Global Difference Measure (GDM), 98 

Figure 1(d). Further, in order to provide a direct link with visual assessment, the point-by-point 99 

FSV outputs are binned into a confidence histogram (usually labelled ADMc, FDMc and GDMc), 100 

Figure 1(e) shows the GDMc.  This data can be used as a proxy for the qualitative assessment of a 101 

group of experts, Figure 1(f) compares the FSV output in the original bins with that from 50 102 

engineers (the original data was EMC based).  The data can also be represented as a density 103 

function, Figure 1(g), which can allow a statistical analysis of the comparison data [21] or further 104 

meta-comparisons, such as in Figure 1(d), where the cumulative density function is being used to 105 

verify with the K-S test the hypothesis that the visual and FSV data are from the same distribution 106 

(for this data Dcrit, the value at which the difference in amplitude is such as to reject the null 107 

hypothesis, for 90% confidence is 0.17, so the null hypothesis can be accepted – a common trend 108 

when comparing FSV data and visual assessment).   109 
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(a) Original data for comparison (axes are 

arbitrary units and not included) 

 
(b) Amplitude Difference Measures 

 
(c) Feature Difference Measure 

 
(d) Global Difference Measures 

 
(e) GDM histogram 

 
(f) GDM histogram compared to (group) visual 

assessment 

 
(g) GDM density function 

 
(h) GDM cumulative density function, showing maximum 

‘D’ parameter for Kolmogorov-Smirnov analysis 

Figure 1. Summary of FSV. 110 

FSV is a reliability function-like heuristic method, is heavily influenced by the approaches used 111 

by Zanazzi and Jona, van Hove, and Pendy [22].  The standard FSV procedures are as follows. 112 
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1) Data segmentation 113 

The working datasets under comparison are first Fourier transformed. Then, the filter shown in 114 

Figure 2 is applied to the transformed working datasets to obtain the DC, Low-, and High-115 

frequency components. The ‘break-point’ location, Nbp, is decided by 116 

∑ 𝑇𝐷𝑊𝑆(𝑖) ≤ 0.4𝑆

𝑁40%

𝑖=𝑁𝐷𝐶+1

 
(1) 

𝑁𝑏𝑝 = 𝑁40% + 5 (2) 

where  𝑇𝐷𝑊𝑆(𝑖) is the value of the ith independent variable within the Fourier transformed data 117 

set; S is the sum of the values of the independent variable; N is the sum of the values of the 118 

independent variable; 40%N  is the element containing the ‘40% location’. The ‘break-point’ 119 

location Nbp is five data points higher than the ‘40% location’. NDC is set to 4. A “breakpoint” at 120 

five data points above 40%N  allows a comfortable transition window between the low and the high 121 

results. The windowed frequency components are then inverse transformed to obtain DC, Low and 122 

High components, labeled as DC, Lo and Hi, respectively. 123 

 
Figure 2. Filter used in the original FSV method [15]. 

2) The calculation of ADM 124 

The ADM is calculated to show the difference between DC and low-frequency information in both 125 

of the datasets under comparison.  126 

𝐴𝐷𝑀(𝑛) =
||𝐿𝑜1(𝑛)| − |𝐿𝑜2(𝑛)||

∑ (|𝐿𝑜1(𝑖)| + |𝐿𝑜2(𝑖)|)𝑁
𝑖=1

+ 𝑂𝐷𝑀 
(3a) 
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where 127 

𝑂𝐷𝑀(𝑛) = |
𝜒

𝛿
| 𝑒𝑥𝑝 {|

𝜒

𝛿
|} 

(4b) 

𝜒 = (|𝐷𝐶1(𝑛)| − |𝐷𝐶2(𝑛)|) 
(5c) 

𝛿 =
1

𝑁
∑(|𝐷𝐶1(𝑖)| + |𝐷𝐶2(𝑖)|)

𝑁

𝑖=1

 
(6d) 

where N is the sum of the values of the independent variable; n is the nth data point. The FSV 128 

measures are generally based on a ‘difference over sum’ approach, except the ODM: the use of the 129 

exponential reflects the non-linear interpretation of offsets in data, where a small offset is 130 

frequently ignored but a large offset is regarded as significant, even if the original data is highly 131 

similar in shape. 132 

3) The calculation of FDM 133 

The scaling factors 2, 6, and 7.2 in equations (4), (5) and (6) are used to balance the internal sub-134 

measures of the FDM, emphasizing either low level trends (broad peaks/troughs) or higher level 135 

features (narrow peaks/troughs). 136 

𝐹𝐷𝑀1(𝑛) =
|𝐿𝑜1

′ (𝑛)| − |𝐿𝑜2
′ (𝑛)|

2
𝑁

∑ (|𝐿𝑜1
′ (𝑖)| + |𝐿𝑜2

′ (𝑖)|)𝑁
𝑖=1

 
(4) 

𝐹𝐷𝑀2(𝑛) =
|𝐻𝑖1

′ (𝑛)| − |𝐻𝑖2
′ (𝑛)|

6
𝑁

∑ (|𝐻𝑖1
′ (𝑖)| + |𝐻𝑖2

′ (𝑖)|)𝑁
𝑖=1

 
(5) 

𝐹𝐷𝑀3(𝑛) =
|𝐻𝑖1

′′(𝑛)| − |𝐻𝑖2
′′(𝑛)|

7.2
𝑁

∑ (|𝐻𝑖1
′′(𝑖)| + |𝐻𝑖2

′′(𝑖)|)𝑁
𝑖=1

 
(6) 

𝐹𝐷𝑀(𝑛) = 2(|𝐹𝐷𝑀1(𝑛) + 𝐹𝐷𝑀2(𝑛) + 𝐹𝐷𝑀3(𝑛)| (7) 

where 𝐿𝑜{1,2}
′  and 𝐻𝑖{1,2}

′  are the first derivatives of the 𝐿𝑜{1,2}  and 𝐻𝑖{1,2}  components, 137 

respectively; 𝐻𝑖{1,2}
′′  is the second derivative of the 𝐻𝑖{1,2} component. The sub-level difference 138 

measures in equations (4), (5), and (6) emphasize independent areas of the compared signals. 139 
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4) The Global Difference Measure (GDM) is obtained through combination of the ADM and FDM. 140 

The GDM gives an indication of the overall goodness-of-fit of both amplitude and feature 141 

differences between compared signals, quantifying the overall assessment of a comparison. 142 

𝐺𝐷𝑀(𝑛) = √𝐴𝐷𝑀(𝑛)2 + 𝐹𝐷𝑀(𝑛)2 (8) 

5) The original development of FSV looked to bridge the gap between a quantitative assessment 143 

and the subjective, qualitative, assessment common in papers, presentations and reports thought 144 

the use of a natural language interpretations scale. The FSV interpretation scale is shown in Table 145 

1. In this way, the form of qualitative result, xDMc (where x is A, F or G), becomes a six-category 146 

confidence histogram. 147 

Table 1. FSV interpretation scale in [18].  148 

FSV value y (quantitative) FSV interpretation (qualitative) 

y 0.1 Excellent 

0.1 y 0.2 Very Good 

0.2  y 0.4 Good 

0.4  y 0.8 Fair 

0.8  y 1.6 Poor 

y>1.6 Very Poor 

To some extent, this approach is being superseded by the use of density functions and distributions, 149 

which provide more options for analysis, particularly meta-comparison. However, the 150 

interpretation scale is still widely used and it is common to see such interpretations in papers where 151 

FSV is used. The qualitative interpretations are not intended to be absolute definitions of quality, 152 

they are merely a means to aid human communication. 153 

2.2.  Transient FSV method 154 

The comparison of transient data, which may typically be simulation versus experimental data for 155 

validation purposes, is made more difficult by the indeterminate nature of the ‘pre’ and ‘post’ 156 
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transient regions, as shown in Figure 3(a). In essence, a comparison could be dominated by the 157 

selection of the length of the tails either side of the transient event. This has recently received some 158 

attention [23-25] with the identification of weighting regimes to ensure that the transient event 159 

dominates any comparison and such a comparison is not skewed by arbitrary choice of duration. 160 

Reference [23] also provided some indication of where experienced users of transient data would 161 

place those boundaries. 162 

 
(a) 

 
(b) 

Figure 3. Illustration of the regions of transient event. 163 

A segment approach was proposed in [23], algorithms were designed to divide the transient into 164 

three regions: pre-transient event, transient event and post-transient event. The FSV is applied in 165 

each region separately. Then, each region is weighted. The transient region was originally 166 

considered as ranging from the end of the pre-transient up to a point that contains 65% of the 167 

signal's energy. The energy is calculated by 168 



10 

 

𝐸𝑛𝑒𝑟𝑔𝑦{1,2}(𝑛) = ∑ (𝐷𝑎𝑡𝑎{1,2}(𝑖))
2

,    𝑛 = 1,2,3, … . . 𝑁

𝑛

𝑖=1

 
(9) 

where 𝐷𝑎𝑡𝑎{1,2} is the set of the data to be compared (“1” is the first dataset and “2” the second 169 

dataset) and N is the length of  𝐷𝑎𝑡𝑎{1,2}.  170 

It is clear that this approach is valid for the transient in Figure 3(a), but is invalid for the step 171 

transient in Figure 3(b) since the energy will be concentrated in the pre-transient region rather than 172 

the transient region (or vice versa).  The approach to transients used in Figure 3(a) is based on the 173 

energy being concentrated in the transient region, something that does not happen with a step-174 

function type transient. 175 

3. Generalized Transient Data Method 176 

To overcome the problems of transient FSV in applications, such as torque data comparison, a 177 

generalized transient FSV approach is required and such an approach is proposed and tested here.  178 

This generalized approach aims to compare the transient data using the standard FSV method after 179 

pre-processing. Meanwhile, the proposed approach is expected to be applicable to a wide variety 180 

of transient types, including those in Figure 3. The key is to develop a pre-processing method that 181 

allows a clear identification of the boundaries between the pre-transient/transient and the 182 

transient/post-transient regions. 183 

3.1. Generalized transient FSV method 184 

Step 1: The boundaries of pre-transient, transient and post-transient regions are identified. To find 185 

the boundaries of “step transient signals”, as shown in Figure 1, the derivative of datasets under 186 

comparison are calculated and the boundaries are determined according to the Cumulative 187 

Distribution Function (CDF) of data 1 and data 2. 188 

1. The cumulative distribution is calculated by 189 

𝐸(𝑛) = ∑(𝐷𝑎𝑡𝑎1′(𝑖)2 + 𝐷𝑎𝑡𝑎2′(𝑖)2),    𝑛 = 1,2,3, … . . 𝑁

𝑛

𝑖=1

 
(10) 
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where 𝐷𝑎𝑡𝑎{1,2}′ is the derivative of the data to be compared (“1” is the first dataset and “2” the 190 

second dataset). N is the length of 𝐷𝑎𝑡𝑎{1,2}′. 191 

2. Then the least-squares fit of a straight line to the cumulative distribution, 𝐸(𝑛), is calculated. 192 

𝐸(𝑛) is then de-trended by subtracting the resulting least-squares function from the original data. 193 

𝐸(𝑛) is de-trended by 194 

𝐸𝑑𝑒𝑡𝑟𝑒𝑛𝑑(𝑛) = 𝐸(𝑛) − (𝑎𝑛 + 𝑏) ,    𝑛 = 1,2,3, … . . 𝑁 (11) 

where a and b are the coefficients of a straight-line function (an+b) that fits 𝐸(𝑛). 195 

3. Subsequently, the positions of the turning point (crest and trough of the de-trended data 196 

𝐸𝑑𝑒𝑡𝑟𝑒𝑛𝑑(𝑛)),  𝑁𝑏𝑝1  and  𝑁𝑏𝑝2 , are found and they are chosen as the pre- and post-transient 197 

boundaries.  198 

Figure 4 shows the process to identify the breakpoints of a pair of step-transient data and Figure 5 199 

does the same process for normal transient data. 200 

  
  

  
Figure 4. Break-point selection of the step transient data. Note the indication of the trends and break points. 201 
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Figure 5. Break-point selection of the normal transient data. Note the indication of the trends and break points. 203 

Step 2: Instead of the weighting approach proposed in [23], a pre-emphasis approach that is based 204 

on interpolation of points in the three regions to match the weighting functions is proposed. 205 

Effectively the pre-transient, transient and post-transient regions are expanded or contracted to 206 

match the influence the regions have on the overall results. The lengths of pre-transient and post-207 

transient regions are proposed to contributing 5% and 20% percent of the overall weighting of the 208 

comparison whole length, respectively, as shown in Figure 6. 209 

The values of 5% and 20% are based on the experience of the authors and are values that can be 210 

subject to further investigation: the authors would welcome further research and contribution to 211 

this from the wider community. The “companded” data sets are then compared using the standard 212 

FSV method. The ADM and FDM results are shown in Figure 7, which also shows the re-mapping 213 

used to provide the emphasis of the regions just described. Hence, the pre-transient region is 214 

compressed (or expanded) to occupy 5% of the data points.  In the example of Figure 7, this will 215 

be 50 points. The transient region is expanded (or compressed) to occupy 75% of the data points 216 

(750 points in this case) and the post-transient region will occupy the remaining 20% of the points. 217 
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This approach has the benefit of not requiring separate comparisons that are then ‘stitched’ back 218 

together but treats the overall comparison as a single uniform whole which can then be interpolated 219 

back to the original point distribution. 220 

 
Figure 6. Illustration of the pre-emphasis approach to data based on interpolation of points in the three regions. 

 
Figure 7. Re-mapping point by point FSV result back to the original data point. 221 

Step 3: Re-mapping point by point data back to the original data point distribution using the 222 

interpolation in reverse. The reconstructed AMD and FDM are obtained by expanding (or 223 

compressing) the FSV results in pre-transient and post-transient regions. The amplitude of the 224 
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ADM and FDM in pre-transient and post-transient regions are proportionally varied. The 225 

proportionality factor is obtained by 226 

𝑃 =
𝑁𝑐

𝑁𝑜
 (12) 

where Nc is the length of the compressed (expanded) region and No is the length of the original 227 

region. Then the GDM is calculated by (8). 228 

3.2. Performance test 229 

The standard and transient FSV has used visual assessment surveys to verify its performance 230 

[23,26]. Since the survey results are qualitatively presented by natural language descriptors, the 231 

survey results are first transformed into quantitative results according to Table 1. After that, the 232 

statistics, mean and standard deviation, of GDM and survey results are calculated. The comparison 233 

between standard deviations indicates whether FSV and the visual assessments are within each 234 

other’s range of expectation. 235 

The generalized transient FSV method is tested using the transient data in [23] that comprises 7 236 

typical transient structures. The results of standard FSV, transient FSV and the generalized 237 

transient FSV method proposed in this paper are compared in Figure 8 (in the same y-axis range). 238 

The mean and standard deviation values are presented by error bars. 239 

It is demonstrated in Figure 8 that both the transient FSV and generalized FSV method could reduce 240 

the disagreement between FSV and visual assessment. Overall, there is little difference in the 241 

means of the comparisons between the original transient and the generalized transient approaches. 242 

Both are significantly better than the standard FSV approach itself. 243 

Also, the performance of the new transient FSV method for the ordinary datasets in [26] were also 244 

tested, as shown in Figure 9. It is noted that the generalized FSV method has little influence on the 245 

assessment of the ordinary datasets, indicating that it can be more widely applied without it having 246 

any significant (detrimental) impact. This is attributed to the fact that the pre-processing of the 247 

generalized FSV has little influence on the ordinary datasets. The break points decided by Step 1 248 
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may close to the 0% and 100% points when features are uniformly distributed in the range of data. 249 

Then the influence of pre-emphasis and re-mapping processes are reduced. 250 

 
(a) 

 
(b) 

 
(c) 

Figure 8. Comparison between 2011 survey and FSV results, (a) standard FSV, (b) transient FSV, (c) generalized 251 
FSV. 252 

 
(a) 

 
(b) 

Figure 9. Comparison between 2014 survey and FSV results, (a) generalized FSV, (b) standard FSV. 253 
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4. Results  255 

Step-transient speed and torque data was experimentally obtained by emulating shaft dynamic 256 

transient loads experienced by a WT drive train on a small-scale test bench equipped with the 257 

contactless torque meter described in detail in [14]. The proposed technique instruments the drive 258 

shaft with two barcodes, one at each end of the shaft, and two optical sensors mounted on non-259 

rotating supports. Torque and speed measurement is achieved by estimating the shaft twist angle 260 

through analysis of the barcode pulse train time shifts [10]. Figure 10(a) shows the effects of torque 261 

reversal due to a drastic reduction of the shaft load, as typically occurring in WT stopping events. 262 

The corresponding changes in speed, shown in Figure 11(a), are the result of the applied torque 263 

that was not countered by the variable speed drive connected to the rig induction motor. Both 264 

figures show the contactless torque meter measurements (in blue) compared with those of a 265 

reference in-line torque transducer (in red). In both cases, the data comparison visual evaluation 266 

shows good agreement between measurements with signal RMSE values of 0.53 Nm and 0.45 rpm, 267 

respectively. 268 

Fig. 10(b) and Fig. 11(b) show the torque and speed data comparison, respectively, when applying 269 

the standard FSV, transient FSV and generalized FSV method. It is indicated that the results of 270 

generalized FSV are smaller than that of standard and transient FSV approach in the pre- and post-271 

transient regions, which means the influence of noise is not exaggerated (as it is clearly the case 272 

for the speed FSV and (original) Transient FSV results in Fig. 11b). Table 2 compares the GDMtot 273 

values of these methods. It is noted that the standard and generalized FSV method could identify 274 

that the agreement between speed data is better than that of torque data, which could be visually 275 

verified by Fig. 10(a) and Fig. 11(a). However, the generalized FSV method results in FSV values 276 

that recognize the difference between the comparison between the speed and torque data.  In 277 

contrast, the original transient FSV method is not as clear.  278 

 279 
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(a) 

 
(b) 

Figure 10. (a) Experimental torque measurements; (b) Comparison of FSV results. 280 

 
(a) 

 
(b) 

Figure 11. (a) Experimental speed measurements; (b) Comparison of FSV results. 281 

Table 2. Comparison of GDMtot results given by different FSV algorithms.  282 

Data Speed Torque 

GDMtot 

Standard FSV 0.13 0.26 

Transient FSV 0.13 0.14 

Generalized FSV 0.04 0.18 

 283 

5. Conclusions  284 

A generalized FSV approach is proposed to validate step-function transient data in wind turbines 285 

measurement along with other data families. The approach is developed to overcome the 286 

limitations of previous standard and transient FSV methods. It is demonstrated that the proposed 287 

approach improves the performance of standard FSV method in the comparison of transient 288 

datasets and can be directly used in the comparison of ordinary (non-transient) datasets. Comparing 289 

with the transient FSV method, the generalized FSV method has been shown to adequately 290 
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compare step-function transients. Further, the proposed approach ensures that the comparison is 291 

dominated by the transient function itself and not the length of the pre- and post- transient periods. 292 

Note that the ability to compare step-function transient behaviour opens up further application 293 

areas within the signal integrity and power integrity (SIPI) domain. 294 
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Abstract: The wind industry is showing increasing awareness about the importance of long-term direct shaft mechanical torque
measurements to fully understand wind turbine (WT) dynamics, adopt proactive solutions for extreme load mitigation and
enhance condition monitoring (CM) capabilities. Although torsional effects are important, torque measurement on such large,
inaccessible machines is practically and logistically difficult, mainly because of the costly and intrusive specialised equipment
currently available. This study details an experimental set-up for the investigation of shaft dynamic transient load and speed
measurements through a contactless, low-cost torque meter. Results are obtained over a range of applied loads and compared
with reference measurements from an in-line, invasive torque transducer. Average torque and speed root-mean-square error
values of 0.53 Nm and 0.35 rpm, respectively, indicate good accuracy of the proposed contactless torque meter. Its
implementation in the field would allow direct, cheap, real-time measurements of WT drive train loads for performance
monitoring, control and CM purposes.

1 Introduction
As large-scale wind farms move further offshore, it is essential to
keep a competitive cost of energy by achieving a high availability
and capacity factor, and ensuring that loss of energy and wind
turbine (WT) downtime are minimised. Offshore wind operations
and maintenance (O&M) incur costs up to 25% of the total
levelised cost of energy [1]. Unscheduled maintenance activity has
been shown to account up to around 65% of O&M costs [2],
resulting in unexpected WT downtime, reduced availability and
lost revenue. Repair costs are not the only consequence of
maintenance, as the WT downtime and revenue costs must also be
considered. These issues highlight the importance of O&M strategy
within economic viability evaluation of large offshore wind farms.
The adoption of cost-effective condition monitoring (CM)
techniques is crucial in reducing O&M costs, avoiding catastrophic
failures and minimising costly unscheduled maintenance. As the
loading on the WT drive train components is highly variable, the
study of transient conditions is fundamental to the development of
reliable CM techniques.

WTs experience a broader range of dynamic loads than most
other large conventional rotating machines. Load variations
originate from the grid/generator due, for example, to curtailments,
grid loss, voltage changes, emergency stops, shutdowns etc., as
well as from very frequent and occasionally extreme wind changes
such as gusts, storms and sudden wind losses. Transient events,
occurring during control actions or anomalous wind speed
behaviour, can cause highly variable drivetrain loads. These can
lead to unexpected torque reversals [3] that can be harmful to WT
drive train components and reduce their expected life [4].

During extreme transient conditions, dynamic torsional loading
causes rapid unloading/loading up of the drive train and loading
up/unloading in the opposite direction. These occur in fractions of
seconds, unlike the typical minute timescale captured by
supervisory control and data acquisition (SCADA) systems. This
creates oscillations affecting the entire turbine drive train system.
Premature failures of some gearbox components have been
associated with overloading experienced by the drive train [5].
Direct high-frequency real-time measurements of drive train loads
can improve confidence in drive train design and allow the
adoption of proactive solutions for extreme load mitigation.

Mechanical torque measurements are also relevant for efficient
CM during turbine operational life, and for condition-based

diagnosis for reliable and safe operation [6]. The potential of
monitoring different WT drive train components using direct
measurements of the shaft mechanical torque signal is significant,
as it contains information on the mechanical response to wind
before any generator effects. Recent studies have shown the
potential benefits of adopting CM systems (CMSs) based on the
measurement of WT shaft torque for the detection of rotor
electrical asymmetry and machine winding faults [7–9], mass
imbalance [10], gearbox failures [11], blade mass imbalance and
aerodynamic asymmetry [12].

Owing to the costly and intrusive nature of measurement
equipment [13], which is impractical for long-term use on
operating WTs, there is currently a lack of insight into dynamic
WT drivetrain behaviour. Furthermore, torque sensors are not
currently used in commercial WT CMSs. This paper presents the
experimental investigation of a novel contactless, low-cost torque
meter for shaft load and speed measurements, with a focus on
tracking transient conditions for use in a CMS. The adoption of the
proposed technique would allow mechanical torque and speed
measurement, and monitoring across the machine operational life.
It relies on the instrumenting of its shaft with a set of two barcodes
and optical probes, one at each end of the shaft, as outlined in the
next section.

2 Contactless shaft torque measurement
The contactless torque meter proposed in this research consists of
two black and white striped codes, with equal stripe pairs, directly
glued around the shaft scanned by two optical sensors mounted on
non-rotating supports. The operating principle of the contactless
torque meter has been described in details in [14]. As schematically
shown in Fig. 1, when a torque is applied to the rotating shaft, it
produces a relative shaft twist, θ, resulting in a time shift, Δt,
between the pulse trains generated by the optical probes. The
measurements of Δt and of the pulse train period, τ, allow the
calculation of the shaft absolute twist angle, θa, and rotational
speed, n, as [15]

θa = 2π
60 nΔt (1)
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n = 60
τppr (2)

where ppr is the number of pulses per shaft revolution. Owing to
mounting misalignment between the two optical probes and/or the
two zebra tapes, the shaft absolute twist angle, θa, could differ from
the shaft relative twist angle, θ, which is calculated as

θ = θa − θa, 0 (3)

where θa,0 is the shaft apparent angular shift at no-load conditions.
Shaft torque measurement can then be indirectly obtained from

the known system calibration curve, that is, the relationship
between the shaft relative twist angle, θ, and torque, T, for a given
shaft and material, described by [16]

T = Iθ̈ + Cθ̈ + Kθ (4)

where I is the rotating system moment of inertia, C is the shaft
damping coefficient and K is the shaft torsional stiffness.

3 Experimental set-up
The contactless torque meter has been tested on the experimental
test bench shown in Fig. 2. The rig features a 4-pole 5 kW grid-
connected induction generator (IG) driven by a 4-pole 5 kW
induction motor (IM). The shaft speed profile is controlled by an
ABB drive. A variable transformer connected to the IG allows
variation of the stator voltage and hence of the torque acting along
the shaft. The IG stator voltage can be varied up to a precautionary
safety limit of its armature winding current of 8 A, allowing a
maximum torque achievable during operation of 16 Nm. The main
shaft is instrumented at each end with a barcode featuring eight
equal black–white segments, with a 5.5 mm stripe width, fitting
exactly around the shaft. The barcode stripe pair number was
selected as a trade-off between measurement uncertainty and
computational cost. In correspondence to each bar code, an Optek
reflective line reader sensor is mounted on a stationary rigid
support, placed at the optimum distance of 0.76 mm from the
target. The distance between the two optical sensors is 45.8 cm. An
in-line Magtrol TMB 313/431 torque transducer is mounted on the
test bench and, being a well-established state-of-the-art technique,

it has been assumed as the reference measurement system during
the experimental campaign. The in-line transducer is also used as a
reference tachometer as it outputs 60 ppr for speed measurements.
Signals from the optical probes and the reference torque transducer
are acquired by a PicoScope 4824 oscilloscope, with a sampling
frequency, fs, of 100 kHz.

4 Data processing
A LabVIEW programme (VI) has been implemented to
automatically process the optical probe pulse signals and obtain the
shaft angular shift by direct timing of their rising edges.

The main steps of the optical system data processing are:

(1) signals are first initialised to overcome any problems associated
with initial probe and barcode mounting offset;
(2) the time at which the rising edges of the two initialised signals
occur is captured by applying an edge trigger with a threshold level
equal to half the peak-to-peak signal amplitude;
(3) a flicker filter is applied to remove any possible timing errors
from signal flickering around the trigger level;
(4) the shaft rotational speed, n, is calculated from the pulse train
period by applying conventional rotary encoder techniques, as
detailed by (2);
(5) an eight-point moving average filter, with seven-point overlap
over time, is implemented to calculate the pulse time shift. This is
to reduce inherent periodic noise in pulse timing due to tangential
and radial displacements between the shaft and optical probes,
typically caused by vibrations or shaft deformation; and
(6) the shaft absolute angular shift is then calculated according to
(1).

Table 1 summarises the main features of the contactless torque
meter mounted on the test bench. 

5 System calibration
The contactless torque meter calibration curve has been obtained
by comparison with the reference measurements of the in-line
torque transducer. The calibration process is schematically shown
in Fig. 3. Steady-state tests were performed on the test rig at four
different shaft speeds. For each case, no-load and different torque

Fig. 1  Operating principle of the contactless torque meter [14]
 

Fig. 2  Experimental test rig
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levels, up to 16 Nm, were applied for around 10 s and
corresponding signals were recorded and processed. 

The linear regression between the shaft relative twist and the
corresponding reference torque, measured by the in-line transducer,
has provided the system calibration curve. As predicted by (4), the
torque-twist trend is linear under steady-state conditions. The
calibration curve shows an R2 value of 0.999, indicating a good fit
of the experimental data by the regression line. The statistical
analysis of the residuals of the calibration data has provided an
expanded measurement uncertainty, with respect to the system full-
scale torque, of ±0.3% [14].

6 Results
Experiments have been performed to emulate shaft dynamic
transient loads experienced by a WT drive train, during anomalous
wind speed fluctuations and control actions. Table 2 shows the
details of each experiment including the torque and speed range the
duration and the WT operating condition emulated on the test
bench. In each case, the contactless torque meter torque and speed
measurements, and dynamic response have been compared with
those of the reference in-line torque transducer. The performance
of the contactless torque meter against the reference system has
been estimated by calculating the signal root-mean-square error
(RMSE), as detailed in Table 2. Both signals have been resampled
at the same frequency of 200 Hz to allow RMSE calculation. 

Results shown in Figs. 4–7 have been obtained by varying the
IG stator voltage through the variable transformer. The
corresponding changes in speed are the result of the applied torque
that was not countered by the variable speed drive connected to the
IM. Fig. 4 shows results for the case of turbulent torque

oscillations, similarly to those encountered in WT normal running
under turbulent conditions. Both the contactless metre torque and
speed measurements allow tracking the turbulent shaft oscillations,
during the whole transient without any time delay. Figs. 5 and 6
show the effects of torque reversal due to a drastic increase and
reduction of the shaft torque, as typically occurring in WT starting
and stopping events, respectively. In both cases, the torque meter
measurements show good agreement with reference measurements.

Fig. 7 shows the good performance of the optical torque meter
during torque harmonic fluctuations, with frequency varying
between 0.28 and 0.76 Hz, imposed on the shaft. Results shown in
Fig. 8 have been obtained by applying rapid and significant
variations to the shaft speed via the ABB drive at a fixed generator
stator voltage. The optical measurements, though giving, in the
case of the torque, a slightly higher RMSE value than in previous
experiments, correlate closely with the reference measurements,
showing a good dynamic response to shaft speed and load changes.

The RMSE values of the performed tests, shown in Table 2, are
consistent and indicate good accuracy of the proposed contactless
torque meter, with the closeness of agreement between its
measurements and the reference torque and speed values measured
by the in-line torque transducer. Overall, the investigated shaft
transient load conditions show average RMSE values of 0.53 Nm
and 0.35 rpm for the torque and speed, respectively, corresponding
to 3.3 and 0.02% of the maximum operating conditions tested
during the experiments.

7 Discussion
Long-term mechanical torque measurements are important for fully
understanding the WT dynamics and for CM purposes. In the wind

Table 1 Main parameters of the experimental optical torque meter
pulses per revolution (ppr) 8
barcode period 11 mm
measurable angular range − π

ppr , π
ppr

angular resolution (δθ) 2πn
60 f s

angular twist sampling frequency n ppr
60

 

Fig. 3  Schematic representation of the calibration process
 

Table 2 Summary of the experimental work performed on the torque test rig
Test Torque range, Nm Speed range, rpm Test duration, s WT operation RMSE

Torque, Nm Speed, rpm
turbulent torque oscillations
(Fig. 4)

−0.8 to 17 1671 to 1706 30 normal running, turbulent
conditions

0.53 0.31

drastic shaft torque increase
(Fig. 5)

−1.2 to 7.3 1681 to 1702 5 starting event 0.48 0.35

drastic shaft torque reduction
(Fig. 6)

−2 to 13.2 1704 to 1756 5 stopping event 0.53 0.45

variable frequency torque
fluctuation (Fig. 7)

4.3 to 10.2 1686 to 1697 28 rapid torque fluctuations 0.54 0.31

variable shaft speed (Fig. 8) 2.9 to 13 1547 to 1853 9 variable speed 0.59 0.33
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industry, there is increasing awareness and growing interest in
measuring the machine loads by direct, cheap and non-intrusive
techniques.

In this work, the use of a contactless torque meter to measure
WT drive train shaft torque and speed is experimentally

investigated. Unlike conventional in-line torque transducers and
conventional strain gauge techniques, this torque meter does not
require costly embedded sensors, electronics or wires on the
rotating shaft. It is relatively simple and cheap to implement into a
commercial WT CMSs for non-intrusive torque monitoring. Also,

Fig. 4  Turbulent torque oscillations
(a) Torque, (b) Speed measurements

 

Fig. 5  Drastic shaft torque increase
(a) Torque, (b) Speed measurements

 

Fig. 6  Drastic shaft torque reduction
(a) Torque, (b) Speed measurements

 

Fig. 7  Variable frequency torque fluctuations
(a) Torque, (b) Speed measurements
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the accuracies of strain gauges often do not meet engineering
requirements due to crosstalk phenomena, which can significantly
increase the measurement uncertainty [17]. The proposed system
allows direct measurement of the shaft dynamic behaviour at
relatively high frequency, under transient conditions that have been
shown to be the most critical for the WT drive train components.
Such a measurement is more advantageous compared with deriving
the electromagnetic torque from the measure of the machine
electrical power, which does not provide direct and realistic
information about the WT drive train dynamics, due to internal
frictional, electric and magnetic losses affecting the measurements.

Although still at the small-scale stage implementation, the
economic benefits of the proposed technique over conventional in-
line torque transducers are evident. The contactless torque meter
installed on the experimental test bench costs overall €100. It
compares well with the cost of the corresponding reference in-line
sensor, which goes well beyond €5000. The difference in costs will
be, of course, even larger in a commercial WT application, due to
the much larger shaft sizes.

8 Conclusions
This paper presents a novel, contactless torque meter for direct
real-time measurement of WT drive train load and speed. The
performance and accuracy of the proposed optical torque system
during dynamic transient load conditions have been experimentally
demonstrated through comparison with reference measurements
from an in-line torque transducer. Results indicate good accuracy
of the proposed contactless torque meter, with average RMSE
values of 0.53 Nm and 0.35 rpm for the torque and speed,
respectively. Unlike conventional measurement methods, the
proposed barcode torque meter does not require costly embedded
sensors or shaft-mounted electronics. It can also be designed to be
fitted, or retrofitted, on any WT shaft diameter and material
without mechanical interference. This overcomes the majority of
problems currently limiting the industrial direct real-time
measurements of WT drive train loads for performance monitoring,
control and CM purposes.

9 Acknowledgment
This work was funded as part of the UK EPSRC SUPERGEN
Wind Hub, EP/L014106/1.

10 References
[1] Crabtree, C.J., Zappalá, D., Hogg, S.I.: ‘Wind energy: UK experiences and

offshore operational challenges’, Proc. Inst. Mech. Eng. A, J. Power Energy,
2015, 229, (7), pp. 727–746

[2] BVG Associates: ‘Offshore wind cost reduction pathways: technology work
stream’, 2012. https://bvgassociates.com/Publications/ accessed on April 2018

[3] Herr, D.: ‘Transient wind events and their effect on drivetrain loads’,
Windtech Int., 2015, 11, (3), https://www.aerotorque.com/sites/default/files/2-
Windtech%20with%20cover.pdf accessed on April 2018

[4] Guo, Y., Keller, J., Moan, T., et al.: ‘Model fidelity study of dynamic transient
loads in a wind turbine gearbox’. Proc. 2103 WINDPOWER Conf., Chicago,
IL, 2013

[5] Al-Hamadani, H., An, T., King, M., et al.: ‘System dynamic modelling of
three different wind turbine gearbox designs under transient loading
conditions’, Int. J. Prec. Eng. Manuf., 2017, 18, (11), pp. 1659–1668

[6] Qiao, W., Lu, D.: ‘A survey on wind turbine condition monitoring and fault
diagnosis – part II: signals and signal processing methods’, IEEE Trans. Ind.
Electron., 2015, 62, (10), pp. 6546–6557

[7] Yang, W., Tavner, P.J., Crabtree, C.J., et al.: ‘Cost-effective condition
monitoring for wind turbines’, IEEE Trans. Ind. Electron., 2010, 57, (1), pp.
263–271

[8] Abdusamad, K.B., Gao, D.W., Li, Y.: ‘Condition monitoring system based on
effects of electrical torque pulsations of wind turbine generators’. 2014 IEEE
PES General Meeting, Conf. Exposition, National Harbor, MD, 2014, pp. 1–5

[9] Djurović, S., Vilchis-Rodriguez, D.S., Smith, A.C.: ‘Vibration monitoring for
wound rotor induction machine winding fault detection’. 2012 XXth Int.
Conf. Electrical Machines, Marseille, 2012, pp. 1906–1912

[10] Wilkinson, M.R., Spinato, F., Tavner, P.J.: ‘Condition monitoring of
generators & other subassemblies in wind turbine drive trains’. 2007 IEEE
Int. Symp. Diagnostics for Electric Machines, Power Electronics and Drives,
Cracow, 2007, pp. 388–392

[11] Soker, H., Kieselhorst, S., Royo, R.: ‘Load monitoring on a mainshaft. A case
study’. German Wind Energy Conf. DEWEK, Wilhelmshaven, 2004

[12] Perišić, N., Kirkegaard, P.H., Pedersen, B.J.: ‘Cost-effective shaft torque
observer for condition monitoring of wind turbines’, Wind Energy, 2015, 18,
(1), pp. 1–19

[13] Yang, W., Tavner, P.J., Crabtree, C.J., et al.: ‘Wind turbine condition
monitoring: technical and commercial challenges’, Wind Energy, 2014, 17,
(5), pp. 673–693

[14] Zappalá, D., Bezziccheri, M., Crabtree, C.J., et al.: ‘Non-intrusive torque
measurement for rotating shafts using optical sensing of zebra-tapes’, Meas.
Sci. Technol., 2018, 29, (6), pp. 1–18, https://doi.org/10.1088/1361-6501/
aab74a

[15] Sue, P., Wilson, D.D., Farr, L., et al.: ‘High precision torque measurement on
a rotating load coupling for power generation operations’. Proc. 2012 IEEE
Int. Instrumentation and Measurement Technology Conf., Graz, Austria,
2012, pp. 518–523

[16] Friswel, V.M.I., Penny, J.E.T., Garvey, S.D., et al.: ‘Dynamics of rotating
machines’ (Cambridge University Press, Cambridge, UK, 2010)

[17] de Silva, C.W.: ‘Sensors and actuators: engineering system instrumentation’
(CRC Press, Boca Raton, FL, USA, 2015)

Fig. 8  Variable shaft speed
(a) Torque, (b) Speed measurements

 

J. Eng., 2019, Vol. 2019 Iss. 18, pp. 4975-4979
This is an open access article published by the IET under the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/)

4979

https://doi.org/10.1088/1361-6501/aab74a
https://bvgassociates.com/Publications/
https://www.aerotorque.com/sites/default/files/2-Windtech%20with%20cover.pdf
https://doi.org/10.1088/1361-6501/aab74a
https://www.aerotorque.com/sites/default/files/2-Windtech%20with%20cover.pdf


The Journal of Engineering

The 9th International Conference on Power Electronics, Machines and
Drives (PEMD 2018)

Power converter junction temperature
measurement using infra-red sensors

eISSN 2051-3305
Received on 22nd June 2018
Accepted on 2nd August 2018
E-First on 4th April 2019
doi: 10.1049/joe.2018.8098
www.ietdl.org

Christopher J. Smith1, Donatella Zappalá1, Christopher J. Crabtree1 , Justo Lapiedra2, Brian Mulholland2

1Durham University, UK
2Anecto, Ireland

 E-mail: c.j.crabtree@durham.ac.uk

Abstract: Studies demonstrate that the power converter has one of the highest failure rates in a wind turbine, with a key failure
driver being the power module junction temperature (Tj). This paper details an experimental setup for simplified emulation of
wind turbine conditions on a power converter with infra-red sensing of IGBT Tj. Results are compared to previous simulation
work for a PMSG wind turbine, with the same trend of increasing mean Tj with wind speed found, and the need to use an
equivalent generator reactance in highlighted. A commercial-scale prototype for more accurate wind turbine converter emulation
is also detailed.

1 Introduction
Studies have shown that the power converter has one of the highest
failure rates in a wind turbine [1]. Furthermore, the converter
failure rate increases with turbine power rating and wind speed due
to higher stressing and a higher number of components [2]: the
current trend in offshore wind farms. Therefore, the converter,
particularly in permanent-magnet synchronous generator turbines
[3], is reliability-critical and must be understood in order to
maximise the impact of improving reliability on the levelised cost
of energy from wind.

Power module failure is the failure mode for nearly all major
converter repairs [2]. Traditionally, power module failure has been
linked to power module thermal loading, where the variation of
temperature in the insulated gate bipolar transistors (IGBT) and
diode cases causes fatigue through expansion and contraction
between package layers [4]. The reference temperature is the
virtual junction temperature (Tj), which is a virtual representation
of the chip p-n junction temperature [4]. Tj variation is deemed the
most important aspect to measure for physics-of-failure reliability
analysis.

Present converter lifetime estimations and simulation models
are validated using only static operating conditions with fixed
currents and frequencies [5]. In reality, wind turbines have
constantly varying frequency, voltage, and current throughputs due
to the stochastic nature of the wind and the reactionary turbine
controllers. There is, therefore, uncertainty over the applicability of
present approaches for determining the suitability of converter
designs to surviving electrical loading characteristics offshore.

In response, a holistic approach to wind turbine power
converter reliability is proposed. This includes a combination of
effective drive train modelling, simulation, and physical emulation
of the power converter and its junction temperature (Tj) response
under realistic wind turbine operating conditions. This will allow
for developments in either computational or experimental fields to
inform the formulation of results of the other.

Previous research by the authors has provided drive train
modelling and thermal loading simulation [4]. This paper outlines
the wind turbine power converter physical emulation and
surrounding drive train to answer the following research questions
(RQ):

(i) How should the device temperature be monitored to provide
high-frequency, high-accuracy Tj measurements without affecting
the control or operation of the device under test? (Section 2)

(ii) How can wind turbine operating conditions be emulated in a
scaled down test bench? (Section 3, 4)
(iii) How do the results of simulation and physical testing
compare? (Section 5)
(iv) How can this experimental rig be implemented for commercial
scale device testing and certification? (Section 6)

2 Junction temperature measurement
To answer RQ1, this section reviews current methods for
temperature measurement, determines the most suitable approach,
and describes the realised thermal measurement experimental set
up.

2.1 Measurement approach selection

There are three main approaches to temperature monitoring: direct
contact, proxy using temperature-sensitive electrical parameters, or
infra-red (IR) measurement.

Direct contact can be carried out using a thermocouple or
thermistor. As thermocouples rely on conduction, they require
direct adhesion to the device under test (DUT), and typically have
slow response times of hundreds of ms [6] making them unsuitable
for high-frequency temperature measurements as required by this
research.

Temperature sensitive electrical parameters use measurable
device voltages and currents to estimate the temperature of the
power module. Some examples include the measurement of
collector-emitter saturation voltage (Vces), gate-emitter voltage
(Vge), and saturation current (Icss) [7]. In all cases, a small
measurement signal is needed that is independent of normal
operating conditions. Therefore, to be used in a functional
environment, the converter control requires complex changes and
the measured signals are susceptible to the noisy converter
electromagnetic environment. This makes the approach impractical
and it is not considered further.

IR measurement relies on capturing the IR radiation emitted by
a body. The spectral content is determined by the temperature of
the body and the emissivity of the body's surface. This relationship
is well documented and can be calculated using Planck's law for a
black body (emissivity (e) of 1). Therefore, by measuring the
spectral radiance from a body over a specified wavelength range
using a photoconductive sensor and correcting for output by the
emissivity of the body (as a percentage of the radiance from a
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black body), the temperature can be measured without physical
contact with the body.

IR measurement comes in two main forms; IR cameras and IR
sensors. The outputs of an IR camera are recognisable by their
multi-coloured images, providing an array of temperature
measurements across a surface. Unfortunately, IR cameras are very
expensive, particularly when fast response times and accurate
temperature measurements are required, making them unsuitable
for this experimental work. In contrast, IR sensors are essentially
single pixel IR cameras and are subsequently less expensive. They
are also able to measure spot temperatures more accurately, making
them ideal for use in Tj monitoring in the power module.

IR approaches have some disadvantages. Although requiring no
physical contact with the measured device, line of sight is required.
This requires modification of the measured device through removal
of its protective casing, as discussed in Section 3.2.

2.2 Experimental set-up

With an IR sensor approach chosen, the temperature measurement
setup was developed to enhance the output of the IR sensor. The
schematic of this setup is shown in Fig. 1. The key aspects of the
optical set up are:

• The IR sensor is a Thor Labs PbSe photoconductive IR sensor
[8] with a spectral measurement range of 1–4.8 μm and a
response time of 10 µs.

• The mirrors. For rig flexibility, parabolic mirrors were used to
focus the IR radiation from the DUT.

• The XYZ position system allows for precise positioning of the
DUT to ensure repeatable testing and accuracy.

• The chopper and lock-in amplifier. As IR sensors are supplied
with a high DC voltage (100 V), they have inherent DC bias on
their output that can interfere with the measurement. To remove
this bias, and to reduce background noise, an optical chopper is
used to shift the temperature signal to 3.5 kHz. A lock-in
amplifier is used as a band-pass filter linked to the chopper.

Fig. 2 presents a photograph of the optical set up. 
The lock-in amplifier voltage output VT in Fig. 1 is converted to

a temperature measurement using a parabolic calibration curve
derived from a range of temperature measurements taken by a
FLIR C2 camera.

3 Drive train set-up
With the temperature measurement ready, wind turbine emulation
was required. This included selecting an appropriately scaled DUT,
preparing the DUT for measurement, scaling the DC link to
emulate the larger wind turbine DC link, controlling the DUT, and
mitigating noise issues. The schematic diagram of the experimental
rig is provided in Fig. 3. 

3.1 DUT selection

In [4], two parallel SEMIKRON SKSB2100GD69/11-MAPB
stacks were used containing SKiiP2013GB172-4DWV3 half-
bridge SKiiP modules. Ideally, these modules would be the DUT
but this was impractical due to the cost and experimental
impracticality of current and voltage ratings (1000 Anom and 1700 
Vces).

A lower rated power module was required to operate within the
available laboratory infrastructure. The power module selected was
the SEMIKRON 01NAC066V3 MiniSKiiP module [9], which has
lower current and voltage ratings (6 Anom and 600 Vces) and lower
unit cost while still using the Trench3 IGBT technology found in
the larger device, allowing for practical but realistic laboratory
testing.

The key limitation of the 01NAC066V3 module is the
packaging technology; the SKiiP2013 uses SKiNTER technology
which replaces solder with cold-welded silver chip, and has the
gate drivers incorporated into the package [10]. However,
according to expert advice, this increases the lifetime of the device
but does not change the fundamental failure modes, meaning that
the 01NAC066V3 module was suitable for emulation of the large
modules found in MW-scale turbines.

3.2 Device preparation

The device comes with a plastic case that uses sprung metallic legs
to connect to the device and it is coated in an insulating silicon gel
to avoid flash over. One of the main challenges with the chosen
temperature measurement approach is the need to have line-of-
sight to the IGBTs. To achieve this, the case was removed and the
sprung metallic legs were replaced with direct solder joints. This
direct soldering required the silicon gel to be removed by placing
the whole device in a dodecylbenzenesulfonic acid bath for 24–48 

Fig. 1  Experimental optical set-up. VT is the temperature dependent voltage output and fch is the chopping frequency
 

Fig. 2  Photograph of optical set-up
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h. The connections were then soldered to the device, the silicon gel
reapplied, and the device secured to a heat-sink with a nylon screw
and thermal paste (Fig. 4). 

3.3 DC link

As the DUT collector-emitter saturation voltage (Vces) is lower
than that of the MW-scale power modules, the DC link voltage
must be scaled accordingly. Then, (1) can be applied to determine
the equivalent DC-link voltage.

VDC, e = Vces, e Vces, f
−1VDC, f (1)

where Vces,e and Vces,f are the experimental and full-scale power
module collector-emitter saturation voltages, respectively, and
VDC,e and VDC,f are the experimental and full-scale DC-link
voltages, respectively. The values are given in Table 1. 

A switch mode power supply with an output capacitor was used
to emulate the DC link (Fig. 3). Due to equipment limitations, the
DC-link voltage could only be set to a maximum of 300 V but this
was deemed reasonable as it was assumed that the current
throughput would have the greater impact on thermal loading.

3.4 Control circuitry

To invert the DC-link voltage, the six IGBTs were switched using
sine wave pulse width modulation (SPWM) at 2 kHz. The SPWM
was generated using a Texas Instruments micro-controller
interfaced with MATLAB/Simulink to allow the use of in-built
function blocks. The voltage was controlled in an open-loop
configuration with the required voltage set in software and
uploaded to the micro-controller.

3.5 Noise

Due to the high-frequency noise generated by switching, there
were a number of issues with interference on both the gate driver
and the temperature measurement output. To mitigate this, the
following steps were taken:

• Isolated grounding and braiding for power circuitry, control
circuitry, and measurement circuitry.

• Metallic shielding for control circuitry.
• Load bank placed away from the experiment.
• Power and gate driver cables kept perpendicular.

4 Wind turbine condition emulation
To replicate the fixed wind speeds in [4], the operating conditions
have to be scaled to match the experimental constraints. The
constant 12.7 m/s wind speed conditions simulated in [4] could not
be replicated as the DC source did not have the current or voltage
capacity required (5 A instead of 6 A, and 300 V instead of 406 V).
The load bank's discrete resistances also meant that independent
control of voltage and current was impossible, and the modulation
index, m, would have to change to accommodate the different
maximum voltages available. Current was given priority, and the
voltage was varied as required as the losses are driven by the
collector current.

The simulation parameters and their physical test equivalents
are given in Table 2. mf is the full-scale modulation index, me is the
experimental modulation index, Ic,f is the full-scale IGBT collector
current, Ic,e is the experimental IGBT collector current, and RL is
the load resistance. Ic,e was calculated by using the ratio between
rated Ic,e and rated Ic,f (6/2800) [6], and me was set so that the
scaled equivalent AC voltage matched the full-scale AC voltage
output. 

5 Results and discussion
With the experimental rig constructed, the first stage was to verify
the experimental rig outputs. Following this, to answer RQ3, the
results from [4] are compared with the experimental results.

Fig. 3  Electrical circuit diagram of the experimental rig
 

Fig. 4  SEMIKRON 01NAC066V3 MiniSKiiP module modified for testing
 

Table 1 Power module voltage parameters
Parameter Value
Vces,e 600 V
Vces,f 1700V
VDC,e 406 V
VDC,f 1150V
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5.1 Experimental verification

To verify that the experimental rig was producing expected voltage
and current profiles, the experimental rig (Fig. 3) was modelled
and simulated in Simulink. The same conditions were then applied
to both model and rig and the voltage and current waveforms
compared.

The simulated and experimental voltage waveforms were
compared at 300 V with a 32 Ω star-connected resistive load with
an output frequency of 1 Hz (Fig. 5). Unsurprisingly, the simulated
three-phase voltage output is cleaner (Fig. 5a) than that of the
experimental rig (Fig. 5b) as the simulation assumes that the IGBTs
are perfect switches. In contrast, the real IGBTs are imperfect and
produce short voltage transients when switching. However, both
produce very similar magnitude waveforms and Figs. 5c and d
reveal that individual voltage changes are consistent between
simulation and experiment, validating the experimental rig output. 

5.2 Comparison with simulation results

Experimental IGBT mean, maximum and minimum Tj resulting
from the conditions in Table 2 are summarised in Fig. 6 alongside
equivalent simulation results. The rise in mean temperature with
wind speed confirms the increase found in [4]. This is because the
overall device power losses increase with increased power
throughput of the device. 

However, unlike the simulation where the ΔTj increased with
increasing wind speed, in this case ΔTj actually reduced. At first
glance, this seemingly disproves the results in [4]. However, this
result can be explained by the use of a resistive load in the
experimental rig. The average Ic increased with increasing wind
speed, increasing the total power losses experienced by the device
and, therefore, raising the mean Tj. However, the instantaneous Ic
when the device is switching is still 5 A regardless of the average
Ic, causing the instantaneous switching power losses to remain
relatively constant.

Therefore, as m increases with increasing wind speed, there are
fewer switching events occurring per cycle, causing lower overall
switching power losses. This in turn creates a lower ΔTj with
increasing wind speed.

In contrast, the inductive load in the simulations acts as a low-
pass filter, smoothing the current throughput, reducing the
instantaneous Ic experienced at switching events, particularly at
lower wind speeds, and, therefore, reducing the switching losses at
lower wind speed.

These results validate that the mean temperature will increase
with increasing wind speed in a PMSG power module, and
highlight the importance of providing an equivalent reactive load to
emulate the power module conditions in future testing.

Table 2 Experimental test parameters and values for four wind speeds
Wind speed, m/s Frequency, Hz VDC,f (V) VDC,e (V) mf me Ic,f (A) Ic,e(A) RL, Ω
4 3.1 1150 V 300 V 0.28 0.57 323A 0.56 150
6 4.6 1150 V 300 V 0.42 0.67 483A 1.26 80
8 6.1 1150 V 300 V 0.55 0.79 633A 2.24 52
10 7.7 1150 V 300 V 0.72 0.93 828A 3.50 40

 

Fig. 5  Verification of 3-phase voltage output
(a) Simulated voltage, (b) Measured voltage, (c) Zoomed-in simulated voltage, (d) Zoomed-in experimental voltage

 

Fig. 6  Tj results for equivalent wind speed tests. Dashed lines are
simulated results and solid lines and experimental results
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6 Ongoing research: commercial test bench
This paper has provided a starting point for power converter
reliability testing, but has highlighted a need for more advanced,
larger scale testing of devices. In response, Anecto have supported
an ongoing research project to construct a larger rig to emulate
more realistic variable wind turbine operating conditions applied to
a power converter in a laboratory environment.

This rig is based on the test bench described here, with several
changes implemented to extend the operational range for more
realistic, industrial-scale testing. Fig. 7 details the configuration of
the larger wind turbine emulation rig. There are a number of
enhancements over the current setup to the rig planned and under
construction:

• The current has been reversed so that the DUT is configured as a
rectifier as it is in simulation.

• To emulate a wind turbine drive train and generator (a
requirement from Section 5.2), an AC–AC converter and
inductor bank have been added that act as the generator
armature and reactance, respectively.

• The load bank in Fig. 3 has been replaced with a DC link for
regeneration.

• The control has been significantly expanded to allow for closed-
loop control of the AC–AC converter and DUT to emulate wind
turbine conditions more closely by allowing varying conditions.
Much of this control is based on the model constructed in [4].

The test bench is designed to test a 600 Vces, 30 A MiniSKiiP
15AC066V1 power module [11] to examine the impact of scaling
factors on the temperature results as compared to the 6 A device.
There is also scope to test at wind turbine drive train currents at
ANECTO's industrial facilities once the intermediate rig has been
constructed and validated.

7 Conclusions
A holistic approach to wind turbine power converter reliability is
proposed. This includes a combination of effective drive train
modelling, simulation, and physical emulation of the power
converter and its junction temperature (Tj) response under realistic
wind turbine operating conditions. This paper provides details of
the experimental rig construction and validation.

Power module failure has been linked to power module thermal
loading. As such, a unique approach of using high-frequency, low-

cost PbSe photoconductive IR sensors has been used to capture the
fundamental frequency temperature variations on a simplified drive
train rig in the laboratory.

The results were compared to simulations in previous work.
The increase in mean Tj of the IGBT in the simulations was
validated experimentally, and the results highlighted the need to
incorporate the reactive component of the PMSG. This led to a
proposed commercial test bench being constructed in collaboration
with Anecto to bring more realistic testing regimes to the wind
industry.
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 

Abstract—This paper presents the development of a doubly 
fed induction machine (DFIG) harmonic model in 
MATLAB/Simulink, which is used to examine the spectral 
content of DFIG controller signals and improve the 
understanding of their behavior and spectral nature. The 
reported DFIG harmonic model has the capability of 
representing the effects of higher order time and space 
harmonics and thus, allows detailed analysis of the controller 
signals embedded spectral effects. The model consists of a wound 
rotor induction machine (WRIM) harmonic model coupled with 
a stator flux oriented controller (SFOC) model. The WRIM space 
harmonic effects are represented using the conductor 
distribution function approach to enable the calculation of 
winding inductances as harmonic series. In addition, analytical 
expressions are derived to define the possible spectral content in 
the controller signals of DFIGs. Both the reported DFIG 
harmonic model and the analytical equations are validated by 
comparison with measurements taken from a purpose built 
vector controlled DFIG laboratory test-rig. The findings confirm 
the capability of the developed DFIG harmonic model in 
representing the controller signals embedded spectral effects, as 
well as the accuracy of the reported analytical expressions, and 
enable a much improved understanding of the spectral nature of 
the DFIG controller signals.  
 

Index Terms—Doubly fed induction generator, harmonics, 
interharmonics, stator flux oriented control, wind turbines. 

I.  INTRODUCTION 

OMPREHENSIVE electric machine and drive modeling, 
which allows for detailed analysis of spectral effects in 
operational parameters is increasingly required in a 

number of areas such as condition monitoring and fault 
detection [1], renewable power generation [2], harmonic 
control in electrical power systems for power quality studies 
[3] and harmonic torque analysis [4]. As the doubly fed 
induction generator (DFIG) topology is presently one of the 
most commonly used in power generator applications [5, 6], 
DFIGs have received a high level of research interest. A DFIG 
comprises a wound rotor induction machine (WRIM) whose 
rotor is interfaced to the grid via a back-to-back converter 
whilst the stator is directly connected to the grid.  

Interharmonics are frequency components that are not 
integer multiples of the fundamental frequency of the supply 
system/grid. Like harmonics, interharmonics can also cause 
overheating, component life reduction, torque oscillations and 
voltage fluctuations, etc., [7]. Several studies have been 
presented in the literature investigating interharmonic effects 
in DFIG terminal quantities and mechanical signals [8, 9, 10]. 
For example, the interharmonic effects created by higher order 
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stator and rotor supply harmonics in grid connected DFIG 
systems were investigated using stator and rotor currents, 
electromagnetic torque and frame acceleration signals 
measurements [8, 10]. In addition, a number of papers have 
examined the general spectral content of various electrical and 
mechanical signals from DFIGs such as the stator currents 
[11], rotor currents [12], stator active power [13] and stator 
reactive power [14]. Switching harmonics effects were studied 
in [9] using electromagnetic torque measurements and the 
stator and rotor currents for stand-alone DFIG systems. [15] 
reported a study of the spectral contents of voltage and current 
signals at the generator terminals and the high voltage points 
of interconnections of MW size commercial DFIG’s, and 
emphasized that the interharmonics caused by the 
nonsinuosidal winding distribution were an important 
contributor to wind generator interharmonic emissions.  

There have been limited studies investigating the spectral 
contents of DFIG controller signals and in particular, the 
interharmonics effects in these due to the nonsinusoidal 
distribution of the generator windings. Some research has been 
conducted on the dq-axis rotor currents [16], dq-axis rotor 
currents controller error [17] and rotor modulating signals 
[18]. These were driven by diagnostic purposes and 
constrained to investigating the fundamental harmonic related 
effects only and therefore did not cater for higher order 
components in the controller signals’ spectra, nor provide the 
general wide band spectral contents definition of the examined 
signals. Better understanding of the wide band spectral nature 
of the controller signals, and their interharmonic contents 
arising from generator nonsinusoidal windings distribution in 
particular, could enable research on improved mitigation of 
associated DFIG electro-mechanical interharmonic effects 
leading to enhanced utilization of existing DFIG systems 
through: establishment of dedicated controllers for harmonic 
emissions and thus, power quality improvements through 
dedicated current injection at target frequency (or frequencies) 
to reduce or eliminate undesirable terminal quantity spectral 
components. The development of such solutions would 
dispense of the need for usage of costly filter banks that seems 
prevalent in current practice [19]. This is not only constrained 
to power quality and electrical stress issues mitigation but 
could be extended to the mitigation of undesirable mechanical 
stress in the drivetrain. Furthermore, enabling better 
understanding of the control loop signals general spectral 
nature can also enable their improved spectral interpretation 
and its correlation with operating conditions and therefore, 
create opportunities for more effective use of readily available 
controller signals for advanced condition monitoring. For this 
to be achieved, suitable dynamic models are required that can 
represent the relevant controller embedded spectral effects. 
This paper aims to progress this area by reporting an 
experimentally validated modeling study of DFIG controller 
embedded interharmonic effects arising from nonsinusoidal 
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distribution of the windings and their analytical definitions.  
A DFIG model required to underpin the controller signals 

interharmonic analysis has to be capable of considering a 
given electric machine design’s relevant electromagnetic 
phenomena that gives rise to air-gap field harmonic effects 
such as the non-sinusoidal distribution of the windings. 
Furthermore, the simulation time must be sufficiently rapid to 
allow implementation of the complex controller system 
architecture in a DFIG [20]. A two-axes (dq) [21] or a 
three-axes (abc) [22] modeling approach is conventionally 
used for DFIG control studies due to their simplicity and fast 
simulation speed. However, these modeling techniques do not 
represent the higher order air-gap magnetic field effects and 
are therefore not capable of facilitating complete DFIG 
interharmonic studies. Proprietary commercial models aimed 
at power system studies exist that represent DFIG terminal 
quantity harmonic emissions; these are however not designed 
for high fidelity drive behavior analysis and ignore MMF 
harmonics and their associated interharmonic effects [23].  

As a numerical modeling technique, the finite element 
method (FEM) can be used to model DFIGs [14]. FEM uses 
the magnetic vector potential method, the geometry of an 
electric machine and layout of the stator and rotor windings, 
along with material properties to produce a detailed machine 
model. As a result, FEM models are capable of credible 
representations of higher order field effects. However, they are 
also highly computationally intensive and their accuracy is 
dependent on mesh density: fine meshing causes a longer 
model execution time [13] but is nevertheless typically 
required to obtain good quality results. Extended calculation 
time is not a desirable feature of an electric machine model 
that needs to interface with a control algorithm and thus, FEM 
models are not a practical optimal choice for facilitating 
effective stator flux oriented control (SFOC) scheme DFIG 
model based interharmonic studies.  

The magnetic equivalent circuit (MEC) method is another 
technique used for modeling DFIGs [20]. MEC uses a 
permeances network model comprising MMF sources and 
reluctances [24] to provide a high level representation of 
electro-magnetic effects, similar to that of FEM. However, 
MEC modeling complexity and long calculation times pose 
challenges in optimal use of this method where a control 
algorithm is included.  

A DFIG harmonic model can also be modeled using the 
winding function approach (WFA) [25] and the conductor 
distribution function approach (CDFA) [26]. Both these 
techniques can cater for the non-sinusoidal distribution of the 
windings and their associated magnetic field effects. 
Furthermore, both techniques have a relatively fast 
computational time compared to numerical modeling 
techniques such as FEM. CDFA was previously used in [10, 
27] to model an open-loop DFIG system in MATLAB. 
However, these works did not include the control system in 
the DFIG model and therefore cannot facilitate the 
investigation of the controller embedded signals. 

This paper utilizes CDFA modeling principles to build a 
harmonic model of the WRIM that is then coupled to a full 
SFOC scheme model to establish a novel DFIG harmonic 
model architecture capable of representation and analysis of 
the wide band spectral effects of SFOC scheme signals and 
their dynamic behavior. The developed model is capable of 
mapping the variations in the wide band spectrum of both the 
outer and inner controller signals due to the nonsinuosidal 

distribution of the stator and rotor windings. Its 
implementation procedure in the widely used SIMULINK 
software platform, to enable straightforward adoption and 
utilization of the proposed modeling principles, is provided. 
The model is developed to perform a study of the wide band 
spectral content of DFIG controller signals with a focus on 
interharmonic effects. In addition, this work undertakes an 
analytical study of the possible frequency (or frequencies) 
contents of the SFOC scheme inner and outer control loop 
signals, and derives a set of closed form equations that relate 
wide band spectral frequencies of individual controller signals 
with DFIG operating conditions. These equations are 
generalized and enable effective prediction and analysis of the 
controller signals spectral signatures of interest. The reported 
results and analytical analysis from the DFIG harmonic model 
are validated via a range of laboratory tests on a purpose built 
grid connected 30 kW SFOC scheme DFIG test system that 
facilitates access to the controller signals.   

II.  DFIG HARMONIC MODEL 

The DFIG harmonic model is developed by integrating a 
WRIM harmonic coupled-circuit model with an SFOC model.  

A.  Harmonic Coupled-circuit Model of a WRIM 

The WRIM model uses the coupled-circuit approach based 
on the principles of complex conductor distribution theory to 
calculate the electric machine inductances for any distribution 
of windings conductors [16, 28]. In addition, higher order 
air-gap MMF harmonics are considered during the inductance 
calculations. The model enables representation of an arbitrary 
number of phases and windings. The WRIM behavior in 
Simulink is defined by conventional equations as: 
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where: [V] is the voltage vector [V]; [R] is the resistance 
matrix [Ω]; [I] is the current vector [A]; [L] is the inductance 
matrix [H]; Te is the electromagnetic torque [N.m]; Tload is the 
load torque [N.m]; J is the rotor inertia [kg.m

2
]; ωm is the rotor 

mechanical speed [rad/s]; and, θm is the rotor mechanical angle 
[rad]. The stator voltages, windings parameters, rotor inertia 
and load torque are assumed to be known in the simulations.  

The coupled-circuit model includes the space harmonic 
effects by employing CDFA principles to evaluate the 
coupling between windings as a harmonic summation [16, 17]. 
For any layout of windings, this allows the effective 
evaluation of the self-inductances and mutual-inductances, as 
illustrated in Fig. 1, by integrating the contributions of 
individual air-gap magnetic field harmonics. 

The total harmonic coupling between an arbitrary 
stator/rotor winding x and an arbitrary stator/rotor winding y is 
calculated as [27]:  
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Fig. 1.  Illustration of the harmonic coupling between the stator a-phase 

winding of the WRIM with all other machine windings. 

 
where: μ0 is the permeability of free space [H.m

-1
]; w is the 

stack length  [m];  d is the mean air-gap diameter [m];  g is the 

air-gap length [m];     is the  th
 harmonic skew factor;   

    
 is 

the  th
 harmonic complex conductor distribution of an 

arbitrary winding x [turns/m];   
    
 is the  th

 harmonic complex 

conductor distribution of an arbitrary winding y [turns/m]; 
and, β(t) is the rotor displacement [m]. When evaluating the 
coupling between any stator-to-stator or rotor-to-rotor 
windings, β(t) is set to zero whereas it is variable when 
performing stator-to-rotor or rotor-to-stator coupling 
calculations.  

The WRIM harmonic model is formed by the system of 
equations given in (1)-(5). The model is solved using an 
appropriate time-stepping iterative procedure in Simulink, as 
shown in Fig. 2. The procedure ensures that at any given rotor 
step, the harmonic coupling is evaluated and superimposed in 
the calculations to enable the representation of space harmonic 
effects in the time and frequency domains [29]. The general 
Simulink block representation of the model is shown in Fig. 2. 
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Fig. 2. WRIM harmonic coupled-circuit model block diagram. 

B.  Controller System of a DFIG 

The SFOC scheme is one of the most common DFIG control 
schemes [30] and is thus used in this work. SFOC enables the 
independent control of DFIG stator active (Ps) and reactive 
(Qs) powers by manipulating the two-axis rotor currents in a 
synchronously rotating reference frame (dq). Therefore, 
three-phase (abc) variables of the DFIG must be first 
converted into their dq-axis equivalents before executing the 
SFOC. The transformation of abc-axis variables is achieved 
via the orientation angle (θs), i.e. the angle between the d-axis 
of the synchronously rotating reference frame and the ds-axis 
of the stationary reference frame.   

The SFOC scheme comprises two cascade control loops for 
both the d- and q-axis, i.e. outer (power) loops and inner 
(current) loops, respectively, as illustrated in Fig. 3.  
In Fig. 3: Qs* is the reference reactive power [var]; Ps* is the 
reference active  power  [W];  Ird*  and  Irq*  are  the  d-axis  
and  q-axis rotor currents [A], respectively; Vrd* and Vrq* are 
the d-axis and q-axis reference rotor voltages [V], 
respectively; reference Vra*, Vrb* and Vrc* are the abc-axes  
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Fig. 3.  Block diagram representation of the SFOC scheme. 

 
reference rotor voltages [V], respectively; and, θr is the rotor 
angle [rad] used for transformation of the rotor variables from 
dq- to abc-axes (i.e. the angle between the synchronous and 
rotor reference frame). The outer loops calculate the values of 
the reference dq-axes rotor currents for the inner control loops, 
and are defined as [31]: 

  m
s sq rq

s

L
P V I

L
    (6) 

 sd m
s sq sq rd

s s

L
Q V V I

L L


   (7) 

where: Vsq is the q-axis component of the stator voltage vector 
[V]; Lm is the magnetizing inductance [H]; Ls is the stator self-
inductance [H]; Irq and Ird are the rotor currents vectors q-axis 
and d-axis components, respectively [A]; and, ψsd  is the stator 
flux linkage vector d-axis component [Wb].  

The SFOC scheme inner loops calculate the reference 
dq-axes rotor voltages, which can be written as [32]: 

 rd
rd r rd c slip c rq

dI
V R I L L I

dt
    (8) 

 rq m
rq r rq c slip c rd slip sd

s

dI L
V R I L L I

dt L
       (9) 

where: Vrd and Vrq are the d-axis and q-axis components of the 
rotor voltage vector, respectively [V]; Rr is the stator referred 
rotor phase resistance [Ω]; Lc is the leakage coefficient [H]; 
and, ωslip is the angular slip speed [rad/s].   

The outer and inner PI controllers were tuned using a 
conventional transfer function approach [33]. In this tuning 
approach, the inner controllers are tuned via (8) and (9) whilst 
the outer controllers are tuned via (6) and (7). The parameters 
of the outer and inner control loops were calculated from their 
closed-loop transfer functions [34]. The outer and inner PI 
controllers’ parameters must be chosen carefully to provide 
satisfactory performance, since they can affect the quality of 
the generated power [35]. It is important to choose appropriate 
time constants for both the outer and inner control loops, to 
ensure adequate controller performance during the 
calculations. Choosing different time constants generates 
separation of the outer and inner control loops, which is ideal 
for implementation of the cascade control loops. The time 
constant of the inner control loops was set to be at least five 
times smaller than that of the outer control loops in this work. 

C.  Simulink Implementation of a DFIG Harmonic Model 

A DFIG harmonic model was developed by integrating the 
WRIM harmonic model, shown in Fig. 2, with the SFOC 
model. The block diagram representation of the DFIG 
harmonic model in the Simulink environment is provided in 
Fig 4. 
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Fig. 4.  Block diagram representation of the DFIG harmonic model.  
 
A single frequency voltage source was used in the averaged 

Rotor Side Converter (RSC) Model, as represented in Fig. 4, 
since the representation of switching harmonics is beyond the 
focus of this study, but could easily be achieved by replacing 
the averaged RSC model with a switched one. The WRIM 
operational speed, ωm, was emulated in Simulink by pre-
setting the desired speed point. The Orientation Angle 
Calculation block (Fig. 4) calculates the orientation angle (θs) 
using the three-phase stator voltages [36]. During this 
calculation, the d-axis of the synchronously rotating reference 
frame is aligned with the stator flux linkage vector and its q-
axis with the stator voltage vector, since the stator resistance 
can typically be neglected [37]. The reference three-phase 
rotor voltages, shown in Fig. 4, are the stator referred values. 
Therefore, before supplying the rotor windings of the WRIM, 
the rotor voltages must be transformed back into their natural 
values using the turns ratio for accurate execution of the 
developed simulation model. 

The WRIM model equations (1-4), the non-linear time-
varying inductance equation (5), and the SFOC scheme 
controller system equations (6-9) form the DFIG harmonic 
mathematical model and are solved in Simulink at each 
integration step for a given rotor position in an appropriate 
time-stepping numerical procedure. It is important to choose a 
suitable integration step for accurate calculation of the 
orientation angle, as well as other model variables. The step 
choice is principally driven by control loop dynamics, and not 
by the significantly slower electric machine (i.e. WRIM) 
dynamics. The proprietary Simulink Runga-Kutta integration 
method with a (1/15) ms step size was used in this work due to 
its relative accuracy.  

The SFOC requires accurate information of WRIM 
parameters. Therefore, performance of the simulations can be 
degraded if the actual electric machine parameters differ from 
those used in the control system. In addition, the current 
controllers need to be carefully tuned to ensure system 
stability and adequate response within the whole operating 
range, as well as to obtain sufficient simulation performance. 
Finally, in order to optimize model execution time, the WRIM 
self and leakage inductances were pre-calculated and stored in 
look-up tables, which were read at each simulation integration 
step. The pre-calculated inductance values were also used to 
calculate the PI controllers’ parameters at the beginning of 
each simulation. 

III.  ANALYSIS OF DFIG CONTROLLER SIGNALS SPECTRA 

This section reports an analytical study of the possible 
spectral content of DFIG SFOC signals, with a focus on 
interharmonic effects arising from WRIM space harmonics. 
The DFIG supply is assumed to be a balanced fundamental 
frequency three-phase system and the WRIM is assumed to be 
electrically balanced. Furthermore, the rotor converter 
switching effects are neglected. The derivations are performed 
for a general case of a three-phase, p pole-pair, DFIG system. 
The general equations defining the time/frequency domain 
nature of the DFIG currents and voltages signals under these 
assumed constraints can be written as [9 - 11, 23]: 

  ( ) cos( )sabc M s vV t V t     (10) 

  ( ) cos([1 6 (1 )] )k

sabc sM s Is

k

I t I k s t     (11) 

  ( ) cos([ 6 (1 )] )k

rabc rM s Vr

k

V t V s k s t     (12) 

  ( ) cos([ 6 (1 )] )k

rabc rM s Ir

k

I t I s k s t     (13) 

where: VM is the peak value of the stator voltage [V]; φv is the 
phase shift between the three-phase stator voltages [rad]; I

k
sM 

is the peak value of the k
th

 harmonic stator current [A]; φIs is 
the phase shift between the three-phase stator currents [rad]; s 
is the slip; k is the air-gap magnetic field pole number (k = 0, 
1, 2,...); V

k
rM is the peak value of the k

th
 harmonic rotor voltage 

[V]; φVr is the phase shift between the three-phase rotor 
voltages [rad]; I

k
rM is the peak value of the k

th
 harmonic rotor 

current [A]; and, φIr is the phase shift between the three-phase 
rotor currents [rad]. The phase shift between the three-phase 
fundamental values is accounted for as 2π/3. 

Equations (10) and (11) allow for the derivation of the 
equation defining the nature of the DFIG stator active power 
signal by multiplying the corresponding voltage and current 
terms [38] as:   

  ( )s sa sa sb sb sc scP t V I V I V I     (14) 

Hence, the resultant total instantaneous active power 
equation can be written as: 

  3
( ) cos([6 (1 )] )

2

k

s M sM s

k

P t V I k s t    (15) 

The stator total instantaneous reactive power is calculated 
using (10) and (11) as [39]: 

 1
( ) [( ) ( ) ( ) ]

3
s sb sc sa sc sa sb sa sb scQ t V V I V V I V V I       (16) 

giving the total instantaneous reactive power equation: 

  3
( ) sin([6 (1 )] )

2
  k

s M sM s

k

Q t V I k s t   (17) 

The analytical equations describing the time/frequency 
domain nature of the DFIG rotor dq-axis currents in the stator 
flux aligned reference frame can be derived after applying the 
standard Park transformation to the instantaneous three-phase 
rotor currents, as defined in (13), as: 

  3
( ) cos([6 (1 )] )

2

k

rd rM s

k

I t I k s t    (18) 

  3
( ) sin([6 (1 )] )

2

k

rq rM s

k

I t I k s t    (19)
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Fig. 5.  Flowchart of the DFIG SFOC strategy showing individual signals possible spectral content definition. 

 
The stator active and reactive power signals, and the stator 

flux oriented rotor dq-axis current signals, are the inputs to the 
SFOC. Therefore, their spectral nature will largely define the 
spectral nature of the remaining SFOC signals, depending on 
the controller loops bandwidths. The closed form analytical 
expressions that define the possible frequency components of 
electromagnetic origin of SFOC controller signals can 
therefore be obtained from the presented derivations and are 
summarized in Table I. These show that the controller signals 
spectral contents are predominantly dependent on the 
operating speed, stator supply frequency and possible air-gap 
magnetic field pole-numbers. The fundamental harmonic or 
DC component frequency is obtained for k = 0 in the 
corresponding expressions, while the speed-dependent 
frequencies are obtained for k = 1, 2, 3... 

The DFIG SFOC is implemented on two separate magnetic 
axes (d and q). Assuming equally tuned controllers in both 
axes, as is conventional, the d- and q-axis frequency 
components behavior is expected to be identical and their 
spectral content the same. Furthermore, the expressions 
provided in Table I enable the evaluation of this content on 
each magnetic axis.   

TABLE I 
Signal Spectral Contents Closed Form Expressions. 

Vra, Ira Ps, Qs, Ird, Irq  

 s±     s   
s
       s   

s
 

The derived definitions of the DFIG SFOC signals 

embedded interharmonic effect are illustrated in the flowchart 

presented in Fig. 5. The figure shows that the error signals of 

the outer (ePs and eQs) and inner (eIrd and eIrq) controllers 

have the same frequency content as the inputs of the outer (Ps 

and Qs) and inner (Ird and Irq) controllers. This is caused by 

the DC nature of the controllers reference input signals. 

IV.  TEST-RIG DESCRIPTION 

An experimental investigation of the DFIG controller 
signals embedded interharmonic effects and validation of the 
reported DFIG harmonic model were achieved using a 
purpose built closed-loop controlled DFIG test-rig facility 
utilizing standard industrial converters.  

The laboratory DFIG test-rig contains an industrial four-
pole, three-phase, 50 Hz, 30 kW WRIM (machine parameters 
presented in Appendix A), which is mechanically coupled to a 
DC machine. The DC machine is operated as a prime mover in 
the test-rig and is used to provide a desired DFIG load point 
via a commercial DC machine drive. The reported  

 

experiments are undertaken for steady-state conditions to 
enable the analysis required for the purposes of this study. 

The WRIM stator windings were directly connected to the 
grid, whereas the rotor windings were interfaced to the grid 
via a commercial back-to-back converter system. The 
back-to-back converter comprises a Control Techniques 
Unidrive SP-4401 grid side converter (GSC) and a Control 
Techniques Unidrive SP-4401 rotor side converter (RSC), 
coupled via a DC link. The SFOC scheme was implemented 
on the commercial converters through a dSPACE 1103 real-
time controller platform via a purpose developed routine, 
which has previously been reported in [34, 40]. 

The real time control platform was also used for capturing 
relevant signal measurements during the experiments. This 
included the input signals to the inner and outer controller 
loops, i.e. the rotor currents and stator power signals, along 
with the controller embedded signals such as the PI controller 
inputs and finally the rotor voltage signals. The test rig was 
fully instrumented for monitoring the relevant DFIG electrical 
signals (i.e. stator currents and voltages) using LEM LA 55-P 
current and LEM LV25-600 voltage Hall effect transducers. 
The rotor mechanical speed was measured by a 1024ppr 
incremental encoder. The simplified layout of the laboratory 
test-rig is shown in Fig. 6. 
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Fig. 6.  DFIG experimental test-rig layout. 

V.  EXPERIMENTAL STUDY AND VALIDATION 

The validation of the DFIG harmonic model and the 
derived expressions to represent both the fundamental and 
higher order MMF harmonic effects in the spectra of the 
controller signals, and the stator and rotor signals, as well as 
the experimental investigation of the DFIG controller signals 
embedded interharmonic effects, will be presented in this 
section. The underlying purpose of the presented analysis is 
not only to validate the proposed DFIG harmonic model and 
presented expressions, but to also facilitate an improved 
understanding of the wide band interharmonic spectral content 
of the SFOC signals. For brevity, the rotor variables from a 
single phase (phase-a) were chosen for the presentation of 
results. However, it is to be noted that practically the same 
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results were observed in the other phases. 
The DFIG harmonic model time domain results were 

processed using a Fast Fourier transform (FFT) function with 
a 2

17
 point rectangular window length. The measured 

experimental results were imported into MATLAB, where 
they were also processed using FFT analysis. A 2

19
 point FFT 

routine was implemented on the recorded experimental 
time-domain signals due to the sampling time limitations of 
the real time dSPACE platform. This phenomenon has been 
previously discussed in greater detail in [34]. Although a 
different number of data points for the Simulink DFIG 
harmonic model and the experimental data were used, both of 
their spectral analyses gave the same resolution (< 0.1 Hz) for 
consistency. 

A.  Validation Study 

The validation of the DFIG harmonic model and the 
derived expressions is presented in this sub-section. The 
model and experimental results are for a typical 
super-synchronous operating speed of 1,620 rpm. Closely 
similar spectral patterns to those observed for the presented 

operating point were identified throughout the operating 
range, but are not shown for the sake of brevity. The DFIG 
harmonic model and the laboratory test-rig were operated with 
active and reactive power demands of -6.5 kW and 0 var, 
respectively.  

The predicted (blue, (a)) and measured (red, (b)) SFOC 
scheme signal spectra are shown in Figs. 7 to 20. The spectra 
are explored in a bandwidth of 0-700 Hz, as this is where the 
most pronounced spectral effects of interest were identified. In 
this spectral bandwidth, the air-gap magnetic field pole 
number values for k = 0, 1 and 2 are applied in the equations 
given in Table I, and the calculated results are presented in 
Table II for the examined operating speed. 

TABLE II 
Calculated Frequency Components for an Operating Speed of 1,620 rpm. 

Vra, Ira Ps, Qs, Ird, Ird 

k = 0 k = 1 k = 2 k = 0 k = 1 k = 2 
(f0) (f1) (f2) (f0) (f1) (f2) 

4 Hz 320 Hz 
328 Hz 

644 Hz 
652 Hz 

0 Hz 324 Hz 658 Hz 

 

 
  

a.  Simulation results a.  Simulation results a.  Simulation results 

   
b.  Experimental results b.  Experimental results b.  Experimental results 

Fig. 7.  FFT spectrum of the stator acive power 

signal for 1,620 rpm operation. 

Fig. 8.  FFT spectrum of the stator reactive power 

signal for 1,620 rpm operation. 

Fig. 9.  FFT spectrum of the stator active power 

error signal for 1,620 rpm operation. 

   
a.  Simulation results a.  Simulation results a.  Simulation results 

   
b.  Experimental results b.  Experimental results b.  Experimental results 

Fig. 10.  FFT spectrum of the stator reactive power 

error signal for 1,620 rpm operation. 

Fig. 11.  FFT spectrum of the reference d-axis rotor 

current signal for 1,620 rpm operation. 

Fig. 12.  FFT spectrum of the reference q-axis 

rotor current signal for 1,620 rpm operation. 
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a.  Simulation results a.  Simulation results a.  Simulation results 

   
b.  Experimental results b.  Experimental results b.  Experimental results 

Fig. 13.  FFT spectrum of the d-axis rotor current 

signal for 1,620 rpm operation. 

Fig. 14.  FFT spectrum of the q-axis rotor current 

signal for 1,620 rpm operation. 

Fig. 15.  FFT spectrum of the d-axis rotor current 

error signal for 1,620 rpm operation. 

   
a.  Simulation results a.  Simulation results a.  Simulation results 

   
.  Experimental results b.  Experimental results b.  Experimental results 

Fig. 16.  FFT spectrum of the q-axis rotor current 

error signal for 1,620 rpm operation. 

Fig. 17.  FFT spectrum of the reference d-axis rotor 

voltage for 1,620 rpm operation 

Fig. 18.  FFT spectrum of the reference q-axis 

rotor voltage signal for 1,620 rpm operation 

  

a.  Simulation results a.  Simulation results 

  
b.  Experimental results b.  Experimental results 

Fig. 19.  FFT spectrum of the reference a-axis 
rotor voltage signal for 1,620 rpm operation. 

Fig. 20.  FFT spectrum of the a-axis 
rotor current signal for 1,620 rpm operation. 
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Figs. 7-20 show the wide band interharmonic effects of the 
predicted and experimentally measured controller signals. The 
investigated frequency components are labeled in the figures 
using the nomenclature given in Table II, in order to enable 
straightforward comparison and validation of the calculated, 
predicted and experimental results. Figs. 7-20 show that f0 is 
generally the dominant component for the controller signals (0 
Hz) and the reference a-axis rotor voltage and current (~4 Hz). 
However, the dominant component for the outer and inner 
control loops error signals is f1, as seen Figs. 9, 10, 15 and 16. 

The presented data show good agreement between the 
predicted and measured results, both of which follow the 
spectral content patterns defined by the closed form equations 
derived from first principles in Table I. In addition to the 
expected fundamental supply and MMF harmonic induced 
spectral content, the examined electrical signals are seen to 
contain a number of additional interharmonic components, 
whose frequencies are accurately predicted by the proposed 
DFIG harmonic model and analytical expressions, and match 
those observed in the corresponding experimental spectra.  

The labeled frequency components in Figs. 7-20 may 
appear in the spectra of the controller signals irrespective of 
what condition the DFIG operates, since these frequency 
components originate from the design of the WRIM. 
Therefore, it is important to fully understand their 
manifestation. For the examined operating point, the wide 
band interharmonics are calculated as 324 Hz and 658 Hz 
using the derived expressions. These are provided in Table II 
and are identified in Figs. 7-20 as f1 and f2, respectively. It can 
be seen from Figs. 7-20 that f1 and f2 are generally more 
pronounced in the q-axis signals spectra, since the reference 
reactive power was 0 var. 

It is to be noted that the experimentally measured data 
contains additional frequency components to those predicted 
by the developed DFIG harmonic model. Some of these 
additional components are due to the effects of the higher 
order supply harmonics mapped at integer multiples of the 
supply frequency. These have been identified and labeled as 
'A' in Figs. 7-20. Furthermore, the RSC switching harmonics, 
exhibited at 6ksf frequencies, in the controller signals have 
also been identified and labeled as 'B' in Figs. 7-20 [10]. 
Additional effects are also expected to be present due to 
inherent electrical and mechanical unbalances but are not 
investigated or identified in this study for brevity. None of 
these additional frequency components are seen in the 
simulation results, since the sources of these effects were not 
modeled or considered during the simulations. The effects of 
these phenomena in the controller signals of DFIGs are 
presently being investigated and will be presented in future 
publications.  

Figs. 11 and 12 show that, as expected, the outer PI 
controllers act as low-pass filters and suppress the magnitudes 
of the wide band interharmonic components coming from the 
error signals of the outer controllers seen in Figs. 9 and 10. 
This is also the case for the inner loops (Figs. 17 and 18). This 
attenuation effect is however more pronounced in the outer 
loops, since their bandwidth is significantly smaller than that 
of the inner loops. 

B.  Representation of Higher Order Space Harmonic Effects 

The ability of (5) and thus, the DFIG harmonic model to 
represent the MMF fundamental, as well as the higher order 
space harmonic effects in the spectra of the controller signals, 

is presented in this sub-section using Figs. 21 and 22. For 
brevity, only the d- and q-axis rotor currents are chosen for the 
analysis of the presented results, as practically identical effects 
were observed in other controller signals. 

 
Fig. 21.  FFT spectra of the predicted d-axis rotor current from the DFIG 

harmonic model for 1,620 rpm 
 

 
Fig. 22.  FFT spectra of the predicted q-axis rotor current from the DFIG 

harmonic model for 1,620 rpm 

  Figs. 21 and 22 show the spectrum of the d- and q-axis 
rotor currents, respectively, by comparing the calculated 
signals when only the fundamental frequency (red) and also 
when the higher order MMF (i.e. coupling inductance) 
harmonics (blue) are considered. As Figs. 21 and 22 show, 
there is a significant difference when more than just the 
fundamental frequency is considered for the coupling 
inductance calculation presented in (5). However, the higher 
order MMF harmonic effects in the spectra are not represented 
when only the fundamental frequency MMF (i.e. harmonic 
inductance) is considered, and are identical to what would be 
obtained by application of a conventional two-axis dynamic 
(dq) electric machine model. The inclusion of the higher order 
harmonic effects is seen to provide a more accurate insight 
into the spectral signatures of the controller signals from 
DFIGs.   

C.  Ps and Qs Demand Levels Influence Study on 

Interharmonic Magnitudes 

The effects of changes in the active and reactive power 

demands on the examined controller signals interharmonics 

magnitudes are experimentally investigated in this sub-section. 

To understand these effects, two experiments were conducted.  

In the first experiment, three step load levels were applied 

to the active power demand: 33.3%, 66% and 100%, whilst the 

reactive power demand was kept constant at 0 Var. The results 

of this experiment are presented in Figs. 23 and 25. In the 

second experiment, three step load levels were applied to the 

reactive power demand: 33.3%, 66% and 100% whilst the 

active power demand was kept constant at 0 W. The results of 

the second experiment are presented in Figs. 24 and 26. The 

test-rig was operated at 1,340 rpm during both experiments. 

The dq-axis rotor currents, as well as the dq-axis rotor 

currents error signals are presented here for the sake of 

brevity, as closely similar behavior was observed in other 

controller signals but is not shown due to space restrictions. 
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Furthermore, the frequency components that were investigated 

in Section V.A are presented in this sub-section for 

consistency. 
 

 
Fig. 23. Measured dq-axis rotor current interharmonic components magnitude 

in Ps change tests at 1,340 rpm 
 

 
Fig. 24. Measured dq-axis rotor current interharmonic components magnitude 

in Qs change tests at 1,340 rpm 

 

Fig. 25. Measured dq-axis rotor current error signal interharmonic 

components magnitude in Ps change tests 
 

 
Fig. 26. Measured dq-axis rotor current error signal interharmonic 

components magnitude in Qs change tests 

Figs. 23 - 26 show that the magnitudes of the interharmonic 

components of the inner controller signals generally increase 

with increasing active and reactive power load levels. This is 

caused by an increase in the air-gap magnetic field strength 

with increasing load. Therefore, the highest magnitudes for 

each of the investigated interharmonic components are 

generally identified for 100% of active and reactive power 

load levels. However, the magnitude can sometimes decrease 

such as f1-Ird in Fig. 23 with increasing active power load 

levels. This may be caused by inherent supply and machine 

winding unbalances, which could cause suppressions of the 

magnetic fields.  

VI.  CONCLUSION 

This paper investigates the DFIG controller embedded 
signals wide band spectral nature with a focus on 
interharmonic effects. The paper first presents the 
development of a novel, computationally efficient, DFIG 
harmonic model and its implementation procedure in the 
widely used Simulink environment. This work also reports 
closed form analytical expressions, derived from first 
principles, which define the possible wide band spectral 
content of the SFOC signals as a function of DFIG operating 
point parameters. 

The performance of the developed DFIG harmonic model 
and the derived expressions were evaluated and validated 
using a purpose built grid connected DFIG experimental 
test-rig facility. To this end the controller signals spectra were 
examined and cross correlated using the derived expressions, 
model predicted and test-rig experimentally measured results. 
The influence of the generator air-gap MMF harmonic effects 
on the wide band spectral frequency content of the controller 
signals was investigated in detail, and their associated 
interharmonic spectral nature clarified. In general the WRIM 
MMF harmonics effects in the controller variables were 
observed at frequencies that are orders of 6(1-s)fs. The 
presented data shows that there is good agreement between the 
calculated, simulation and experimental results and thus, 
confirming the validity of the proposed model and closed from 
expressions.  

The developed DFIG harmonic model and the derived 
expressions enable a clear representation and understanding of 
the spectral nature of DFIG controller signals, and can be used 
to underpin studies of controller embedded and other related 
spectral effects in DFIG drives to further the understanding of 
their behavior. Furthermore the reported model presents a 
versatile tool for analysis of harmonic effects in DFIG drives 
that can be expanded to cater for other spectral phenomena of 
interest such as inverter switching harmonics or grid imposed 
time harmonics. The presented conclusions are obtained from 
analysis undertaken on a typical academic scale DFIG system 
and would be expected to be applicable on a wide range of 
general DFIG designs. However, further research studies 
encompassing different commercial designs would be needed 
to confirm the generality of the observed phenomena. 
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VII.  APPENDIX A 
Wound Rotor Induction Machine Parameters. 

PARAMETERS VALUE UNITS 

Stator voltage   
Stator current 

120 
56 

Vrms  
A 

Full-load power  
Full-load speed 

30  
1470 

kW 
rpm 

Stator / Rotor resistance 0.09 / 0.066 Ω/phase 
Stator leakage inductance 0.911 mH/phase 
Rotor leakage inductance 0.459 mH/phase 
Magnetizing inductance  44.6 mH/phase 
Effective turns ratio 1.33 - 

VIII.  APPENDIX B 

The electric machine geometry and the number of 

conductors in the slots are important variables for the 

calculation of electric machine inductances using the CDFA, 

since this method is based on the spatial distribution of 

winding conductors [11]. The CDFA for an arbitrary n
th

 stator 

or rotor coil is defined as [28]: 

  ( )






  v

v
jk yk

n n

v

c y C e   (20) 

where: 

  2


  v njk yk v vn

n b p

N
C j k k e

d
  (21) 

In (21): v is the space harmonic order number (v = 1, 2, 3,...), 

yn is the position of the center of the n
th

 coil [m], kv is winding 

conductor distribution wave number of the v
th

 harmonic, Nn is 

the number of conductors in a slot, d is the mean air-gap 

diameter [m], kb
v
 is the v

th
 harmonic slot mouth width factor, 

and, kp
v
 is the v

th
 harmonic pitch factor of the n

th
 coil of a 

winding. 
 

kv is calculated as: 
  2 /vk v d   (22) 

kb
v
 is calculated as: 

  sin /
2 2

   
    

   

v v v
b

k b k b
k   (23) 

and, kp
v
 is calculated as: 

  sin
2

 
  

 

v v n
p

k
k   (24) 

where: b is slot mouth width [m], and, αn is coil pitch of the n
th

 

coil.  
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a b s t r a c t

In MW-sized wind turbines, the most widely-used generator is the wound rotor induction machine, with
a partially-rated voltage source converter connected to the rotor. This generator is a significant cause of
wind turbine fault modes. In this paper, a harmonic time-stepped generator model is applied to derive
wound rotor induction generator electrical & mechanical signals for fault measurement, and propose
simple closed-form analytical expressions to describe them. Predictions are then validated with tests on
a 30 kW induction generator test rig. Results show that generator rotor unbalance produces substantial
increases in the side-bands of supply frequency and slotting harmonic frequencies in the spectra of
current, power, speed, mechanical torque and vibration measurements. It is believed that this is the first
occasion in which such comprehensive approach has been presented for this type of machine, with
healthy & faulty conditions at varying loads and rotor faults. Clear recommendations of the relative
merits of various electrical & mechanical signals for detecting rotor faults are given, and reliable fault
indicators are identified for incorporation into wind turbine condition monitoring systems. Finally, the
paper proposes that fault detectability and reliability could be improved by data fusion of some of these
electrical & mechanical signals.
© 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Wind energy has a crucial role in providing sustainable energy.
By the end of 2017, the world-wide wind power installed capacity
has risen to 540 GW [1], of which 169 GW are in the EU, approxi-
mately 153 GW onshore and 16 GW offshore [2]. Offshore wind has
significant generation potential in Europe, especially in the UK,
thanks to beneficial wind resources and sea-bed conditions. Opti-
mising operations and maintenance (O&M) strategy through the
adoption of cost-effective and reliable condition monitoring (CM)
techniques is a clear target for competitive offshore wind devel-
opment [3e5]. One of the main challenges currently facing the
wind CM industry is to improve the reliability of diagnostic de-
cisions, including component fault severity assessment [6]. Wound
Rotor Induction Generators (WRIG), using a partially-rated Voltage
Source Converter (VSC) to supply the rotor, known as Doubly-Fed
Induction Generators (DFIG), are identified as the most widely-

used generator in wind industry for MW-size variable speed ap-
plications [7,8], where Induction Generators in general are domi-
nant, although Permanent Magnet Generators are gaining
acceptance. Reliability surveys have highlighted that generator
faults make a significant contribution to onshore wind turbine
(WT) down-time [9e11]. With reduced accessibility offshore, any
down-time is significantly extended. References [12e14] have also
shown that rotor winding unbalance, caused by brush-gear or slip-
ring wear/fault or winding electrical faults, are major contributors
to WT generator failure rate. Monitoring generator electrical faults
has not yet become standard practice in the wind industry where
the majority of CM systems (CMS) are based on monitoring high-
frequency vibration in gearbox and generator bearings [15].
Increasing concern about WT electrical component reliability [11],
particularly offshore, could be overcome by expanding current CMS
capabilities.

Steady-state DFIGs winding fault detection based on analysis of
readily available current, power or even vibration signals has been
widely researched and several diagnostic methods, based on time-
or frequency-domain techniques, have been proposed to detect
rotor failures. The first paper to consider current, speed and
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vibration measurement for detecting induction machine faults was
[16] in 1982, in particular the presence of slip-dependant compo-
nents in various induction machine electrical & mechanical signals
has been reported in papers since 1978. However, more recent
references [17e23] provide much greater analytical detail, at least
for electrical signals. The feasibility of using mechanical signal
spectra, vibration, torque or speed, as generator electrical unbal-
ance fault indicators were investigated in Refs. [24e28]. However,
all these papers relied on the analysis of single signals only, rather
than considering the possibility of reducing effects of signal noise
and improving detectability by combining multiple signals. The
adoption of a data fusion approach, based on the comparison of
independent single signals, could contribute to increasing confi-
dence and reduce false alarms, as already demonstrated for WT
gearboxes in Refs. [29e31]. Despite interest in recognising gener-
ator fault signatures in multiple signals, there is a lack of literature
explaining how to improve reliability by combining relevant diag-
nostic signals. Furthermore in WTs, the use of a VSC-connected
machine monitored by a CMS now means that both electrical &
mechanical signals are readily available to the operator.

This paper, therefore, sets out comprehensive generator signal
prediction and measurement under rotor electrical unbalance
(REU), at varying load and fault levels, with the aim of measuring
wide-band, fault-related, electrical & mechanical harmonic side-
bands, comparing and amalgamating them to improve fault
recognition and raise reliability. The work builds on previous
research [17], [18], [22], [28], [32], providing a comprehensive
investigation of rotor electrical fault effects on DFIG stator current,
Is, power, Pe, shaft speed, Ns, mechanical torque, Tm & frame vi-
bration, Av.

First, the paper provides closed-form analytical expressions,
arising from author's previous publishedwork, linking fault-related
signal frequencies to generator operating conditions. A harmonic
model of a laboratory DFIG is then used to investigate REU wide-
band spectral signatures. The extent to which fault-related fre-
quencies, predicted by theory, are manifested in DFIG electrical &
mechanical signals is then investigated experimentally. Finally, the
correlation between the identified electrical & mechanical signal
spectral components and their ability to demonstrate rotor fault
severity progression within the generator operating range is
explored with the aim of identifying reliable fault indicators for
potential incorporation in commercial WT CMSs.

2. Generator rotor electrical unbalance: model study

Closed-form analytical expressions defining the spectral char-
acteristics of Is & Pe, for a DFIG with an electrically balanced rotor
were previously presented by the Authors in Refs. [17], [28], [32]
and are summarised in Table 1. These equations account for un-
balanced stator supply and higher order field harmonics, typical of
practical applications. According to [16], [33], [34], a spectral con-
tent of electro-magnetic origin is also detectable in the speed
signal, Ns. Machine electrical & mechanical spectra under balanced
conditions, described by equations in Table 1, are defined by a set of

characteristic frequencies, referred to as carrier frequencies (CF).
These frequencies are an artefact of generator design and supply
harmonic content, and depend on: rotor slip (s), supply frequency
(f), supply harmonic order (i and l, where i, l¼ 1,2,3 …) and air-gap
magnetic field pole pair number (k, where k¼ 1,2,3 …). The CF
expressions in Table 1 contain two distinct subgroups:

i. Supply frequency harmonic carriers (H), rotor speed invariant
artefacts of supply harmonics, corresponding to k¼ 0 and i s
0 for current or l± i s 0 for other signals;

ii. Slot harmonic carriers (S), rotor speed dependant inter-
harmonic frequencies due to slotting, corresponding to k s
0 and i s 0 for current or l± i s0 for other signals.

REU gives rise to additional ±2nsf side-bands around existing CF
components in Is spectra, which are consequently reflected into
counter-part ±2nsf components of the CFs identified in the Pe & Ns

spectra [22], [28], [33], [34], [35], where n can take any positive
integer value, i.e. n¼ 0, 1, 2, 3 … The third column in Table 1
summarises analytical expressions describing possible DFIG signal
spectral content under REU operation, derived by taking account of
CFs 2nsf side-bands, i.e. CF±2nsf. As side-bands generally decay
with order [22], only fundamental (i.e. first order side-band)
components are examined further in this work. REU-induced
side-band equations can be resolved into two distinct sub-groups
depending on whether they correspond to supply harmonic side-
bands (HL and HU) or slot harmonic side-bands (SL and SU), where
subscripts L and U denote lower and upper 2sf CF side-bands,
respectively.

To understand REU-induced electrical & mechanical spectra, a
time-stepped DFIG harmonic model was developed [18], [36]. A 4-
pole laboratory generator has been used in this research; the model
emulated its design and operational data as model inputs. The
model enables the analysis of higher order harmonic effects and
was used to study the steady-state spectral content of Is, Pe & Ns

signals. Generator operation was simulated for illustration pur-
poses at the loaded operating speed of 1590 rpm, 90 rpm above
synchronous speed and speed-ripple effects were incorporated in
model calculations [33,34]. The three-phase supply was modelled
with 3% magnitude unbalance to match typical laboratory levels.
The stator windings were modelled as balanced for the purposes of
this study. To study the spectral effects of interest predicted spectra
were investigated over 0e450 Hz band-width for Is & Pe, and
0e150Hz band-width for Ns. The harmonic model was used to
evaluate the influence of supply harmonics on signal spectra for the
generator operating with an electrically balanced rotor using wide-
band modelling of dominant 3rd, 5th, 7th, 11th and 13th supply har-
monics, H1þ3þ5þ7þ11þ13, with mean rms value limits, in terms of
fundamental percentage, of 5%, 6%, 5%, 3.5% and 3%, respectively, as
specified in the relevant grid code [40].

Predictions were obtained from the model to evaluate wide-
band REU spectral signatures by increasing one rotor phase wind-
ing resistance by 300% of its rated value.

The predicted stator phase current, Is, total power, Pe and

Table 1
Is, Pe & Ns, Carrier Frequencies (CF) and their ±2nsf side-bands.

Generator Signal Closed-Form Analytical Expressions

Balanced Rotor (CF) Unbalanced Rotor (CF± 2nsf)

Stator Current, Is ji±6kð1� sÞjf jði±2nsÞ±6kð1� sÞjf
Stator Active Power, Rotational Speed, Pe & Ns jðl±iÞ±6kð1� sÞjf j½ðl±iÞ±2ns �±6kð1� sÞjf
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generator speed, Ns, under balanced and unbalanced, 300% REU,
conditions are shown in Figs. 1 and 2. For each signal direct com-
parison of healthy and faulty spectra enables a clear understanding
of REU wide-band spectra.

Supply harmonic carriers derived from Is and Pe & Ns have been
denoted by HI and HP, respectively; while slotting harmonic car-
riers have been denoted by SI and SP, respectively. For clarity, only
REU first order side-band frequencies are labelled in Figs. 1 and 2,
where the subscripts L and U denote CF 2sf lower and upper side-
bands, respectively, identified by the red solid lines for H har-
monic side-bands and by the blue dotted lines for S slot harmonic
side-bands.

Spectral frequencies labelled in the graphs can be calculated for
corresponding operating conditions by appropriate expressions in
Table 1. This confirms the validity of the proposed closed-form
equations for analysis of REU induced spectral signature.

Tables 2e5 list equation parameters and corresponding spectral
frequency numeric values observed in model results.

3. Generator rotor electrical unbalance: experimental
validation

3.1. Experimental test rig

Model results were experimentally validated and quantified in a
series of experiments on a laboratory test rig, illustrated in Fig. 3,
comprising an industrial 4-pole, three phase, 240 V, 50 Hz, 30 kW,
star-connected WRIG. The generator rotor rated phase resistance
was 0.066U. The WRIG was mechanically coupled with a 40 kW DC
generator, used to drive the WRIG at a pre-chosen constant speed
during experiments. The generator stator windings were connected
to the grid via a three phase variable transformer, whilst the rotor

b

a

Fig. 1. Predicted Is (a) & Pe (b) spectra at 1590 rpm, balanced rotor winding & 300% REU.

D. Zappal�a et al. / Renewable Energy 131 (2019) 14e2416



windings were short-circuited. REU conditions were emulated by
introducing additional resistance into one rotor phase winding.

The DC generator speed and torque were controlled by a com-
mercial DC controller. A shaft mounted 1024 ppr incremental
encoder was used for speed measurement and its output signals
processed in real-time using a dSPACE 1103 platform to extract the
value of Ns. WRIG instantaneous stator currents, Is, and voltages, V,
were measured using Hall effect sensors and synchronously
recorded by a LeCroy WaveSurfer digital oscilloscope sampling at a
rate of 10 kHz. Recorded currents and voltages were used to
calculate the total instantaneous stator power, Pe, using the two
wattmeter method. The WRIG was mounted on a Kistler 9281B
force platform, containing three-axis piezoelectric transducers, to
measure the dynamic shaft torque [37]. The piezoelectric sensor
signals were acquired by a NI DAQ-6351 card and then processed to
calculate the shaft torque, Tm. The WRIG frame vibration, Av, was
measured on the horizontal axis with a Brüel&Kjaer (B&K) DT4394
piezoelectric accelerometer, which was fitted to the generator load-
side end-plate. The vibration spectrumwas recorded with 0e1 kHz
band-width at 6400 lines of resolution using a B&K PULSE vibration
analysis platform. Other signals were processed using the MATLAB
FFT routinewith 217 data points to achieve a frequency resolution of
0.0763 Hz/line. Monitored signals were recorded during generator
steady-state operation and their spectra examined for this study
over a 0e450 Hz band-width for Is, Pe, Tm & Av signals, and over a
0e150Hz band-width for Ns.

Fig. 2. Predicted Ns spectra at 1590 rpm, balanced rotor winding & 300% REU.

Table 2
Predicted Is supply frequency harmonics and their side-bands.

i k Supply
Harmonic
Carrier
Frequencies
(CF) HI

Supply Harmonic CF Side-bands

CF Hz CFþ2sf Hz CF-2sf Hz

1 0 HI1 50 HI1L 44 HI1U 56
3 0 HI3 150 HI3L 144 HI3U 156
5 0 HI5 250 HI5L 244 HI5U 256
7 0 HI7 350 HI7L 344 HI7U 356

Table 3
Predicted Is slotting harmonics and their side-bands.

i k Slotting
Harmonic
Carrier
Frequencies
(CF) SI

Slotting Harmonic CF Side-bands

CF Hz CFþ2sf Hz CF-2sf Hz

1 1 SI1 268 SI1L 262 SI1U 274
1 1 SI2 368 SI2L 362 SI2U 374

Table 4
Predicted Pe & Ns supply frequency harmonics and their side-bands.

i l k Supply
Harmonic
Carrier
Frequencies
(CF) HP

Supply Harmonic CF Side-bands

CF Hz CFþ2sf Hz CF-2sf Hz

1 1 0 HP1 0 HP1U 6
3 1 0 HP3 100 HP3L 94 HP3U 106
5 1 0 HP5 200 HP5L 194 HP5U 206
7 1 0 HP7a 300 HP7aL 294 HP7aU 306
7 1 0 HP7b 400 HP7bL 394 HP7bU 406

Table 5
Predicted Pe & Ns slotting harmonics and their side-bands.

i l k Slotting
Harmonic
Carrier
Frequencies
(CF) SP

Slotting Harmonic CF Side-bands

CF Hz CFþ2sf Hz CF-2sf Hz

1 1 1 SP1 218 SP1L 212 SP1U 224
1 1 1 SP2 318 SP2L 312 SP2U 324
1 1 1 SP3 418 SP3L 412 SP3U 424
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3.2. Electrical & mechanical signal analysis

To allow direct comparisonwith model predictions presented in
Section 2, tests were first performed at 1590 rpm. An external
additional resistance of z0.198U was introduced into one rotor
phase to give up to 300% REU. Is, Pe & Ns spectra measured for
healthy and faulty conditions are shown in Figs. 4 and 5. Detectable
frequencies of interest, corresponding to ±2sf side-bands tabulated
in Tables 2e5, are labelled in the measurements. Measured spectra
are in good agreement with predictions, where contents origi-
nating from supply-induced inter-harmonic effects, slotting side-
bands and REU side-bands are shown. As predicted by analysis
reported in section 2, the presented measurements confirm that
REU causes additional, slip-dependant side-bands at calculable
frequencies, confirming this research.

Small discrepancies between numerical and experimental re-
sults are due to inherent supply frequency variations and velocity
measurement accuracy limitations. Some REU-related side-bands
are present in the healthy generator spectra, at low magnitude, as
an artefact of inherent rotor unbalance, unavoidable in any practical
generator, arising from manufacturing imperfections [17]. Mea-
surements are also much noisier than model predictions due to
inevitable geometrical inaccuracies in machine construction and
the full air-gap electro-magnetic effects, as well as supply second-
ary noise effects not represented in themodel for the sake of clarity.
However, most predicted REU-specific components are clearly
visible above measurement noise. Comparison between healthy
and faulty spectra indicates that REU induces considerable change
in many components, with Is & Pe side-bands giving clearer fault
indication than Ns.

4. Discussion

4.1. Model study

Model predictions in Figs. 1 and 2 and Tables 2e5 show the
presence of significant wide-band signatures in all Is, Pe & Ns

generator signals. For operation under REU conditions additional
±2nsf side-band components clearly arise in supply and slot har-
monic spectral components that can be correlated across different
signals. Previous work [25], [26], [28], [32], [38] has shown that
effects associated with attractive rotor-stator radial magnetic forces
can also give rise to oscillations at identical frequencies inTm& Av as
in Pe & Ns spectra. In summary, models identified the following

components to be looked for in experimental signals:

� SI, HI lower and upper 2sf side-bands in Is;
� SP & HP lower and upper 2sf side-bands in Pe, Ns, Tm & Av,
respectively.

These side-bands correspond to those disparately described in
previous literature, presented comprehensively in thismodel study.

4.2. Experimental study

Is, Pe & Ns model predictions are confirmed by the experimental
results presented in Section 3.2 and shown in Fig. 4 for Is & Pe and
Fig. 5 for Ns. Fig. 6 shows the experimental results for Tm & Av. Note
that, in this case, the same side-band labelling system as for Pe & Ns

has been adopted to indicate the detectable ±2sf frequencies.
Inherent rotor unbalance artefacts, due to manufacturing im-

perfections in practical generators [17], give rise to low magnitude
±2sf side-bands in Tm & Av even under healthy operation; this is
expected and clearly seen in Fig. 6. Tm & Av spectra are noisier than
corresponding electrical signals, partly due to the mechanical
instrumentation but also because Av is affected by both air-gap
excitation and frame response [26], [38], [39]. The majority of
REU-related supply frequency harmonic and slotting component
±2sf side-bands, predicted by the model, are clearly visible in
measured Tm spectra but because of the dependency of the vibra-
tions on the generator frame mechanical response, not all fre-
quencies observed in Tm are manifested in Av. Av shows similar but
non-identical characteristics, compared to Is, Pe, Tm & Ns because,
whilst the air-gap flux density is modulated by the fault harmonics,
vibration signals are also attenuated by the resonant vibration
response of the machine stator core and frame, as described in
Refs. [16] and [28]. Slotting harmonic (SP) side-bands together with
HP1U, in the case of Tm, and with HP3U, in the case of Av, are most
prominent and, in most cases, exhibit clear increases under
generator fault conditions. The upper 2sf side-band of the funda-
mental harmonic at zero Hz, HP1U, traditionally used as an REU
indicator [41], is invisible in Av spectra because of the limited fre-
quency response of the piezoelectric accelerometer, i.e. 5 Hz-
10 kHz; a similar constraint will exist in commercial CMS sensors
[15].

Table 6 summarises the detectable supply and slotting harmonic
side-bands in Is, Pe, Ns, Tm & Av measured signals, present in REU
faults, derived directly from the generator air-gap flux density,

Fig. 3. Schematic diagram of the experimental test rig and its instrumentation.
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modulated by rotor fault harmonics, and in Av affected by frame
response.

4.3. Fault detection

The influence of REU severity and generator load on the fault
recognition capability of identified ±2sf side-bands has been
investigated by performing a series of tests under steady-state
conditions over the full generator operating range. The WRIG
speed was increased in steps of 30 rpm, from no-load, 1500 rpm, up
to full-load, 1590 rpm. At each steady-state load, the generator was
first tested under balanced rotor conditions and then under three
increasing severity REU levels, shown in Table 7. The REU level was
estimated as a percentage of balanced phase resistance, compara-
ble to those used in previous studies [19], [21], [24].

For each fault and load condition, five separate Is, V, Ns & Av
measurements and four separate Tmmeasurements were recorded.
The fault signal spectra examined in steady-state agreed with the

predicted and experimental results described in Sections 2& 3. The
magnitudes of ±2sf fault-related side-bands, identified in Table 6,
were extracted from each signal and averaged to minimise sensi-
tivity to supply variations. A normalised detectability algorithm, D,
applied to the measured data has been defined as:

D ¼
P

iF
2
iP

iH
2
i

(1)

where:

� P
i
F2i is the sum of amplitudes squared of selected fault condi-

tion CF harmonic side-bands;
� P

i
H2
i is the sum of amplitudes squared of selected unfaulted

condition CF harmonic side-bands.

Results were then compared, in Fig. 7, to investigate the ability
of each identified component to discriminate fault severity over the

a

b

Fig. 4. Measured Is (a) & Pe (b) spectra at 1590 rpm, balanced rotor winding & 300% REU.
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full generator operating range, based on the harmonics listed in
Table 6. Note that D has a floor level of 1 when

P
i
F2i ¼ P

i
H2
i , as

indicated in Fig. 7 graphs by the grey base to ordinate D.
In Fig. 7 Is& Pe show themost distinct responses to REU changes,

even for small fault magnitudes; Tm also exhibits clear rising trends,
with an exception at 1530 rpm, while Ns also provides a reliable
fault indicator, although with lower sensitivity as unbalance in-
creases. Fig. 7.e shows that vibration, Av, did not exhibit side-bands
giving consistent fault recognition within the generator operating
range, due to the Av-REU signature being attenuated by generator
frame mechanical response, which, in this case, varies significantly
with operating speed [28]. In addition the accelerometer frequency
response in these experiments could not identify HP1U vibration
components. Fault recognition using this side-band could be
possible if low frequency resolution accelerometers, such as fibre
optics, were employed.

4.4. Improving fault detectability by data fusion

Various authors have advocated data fusion to improve fault
detectability, notably for wind turbine gearboxes [30] and electrical
machines [41]. The principal of data fusion is to increase detect-
ability and detection confidence for the condition monitor and
maintainer by combining signals from different sources. The suit-
ability of combining REU-specific frequencies in generator signals
as CMS fault indicators for data fusion can be assessed using the
experimental load-dependency discussed in Section 4.3. The sig-
nals considered for data fusion from this paper, are with
justification:

� Electrical, Is or Pe, attractive as these signals are strong, closely
related to the air-gap magnetic field and hence to REU;

� Mechanical, Tm, Ns or Av, attractive as these signals come from
reliable sources, trusted by generator operators, but less closely
related to the air-gap magnetic field and hence REU.

The combination of Is & Av, Pe & Ns and Is & Tm has been inves-
tigated. In each case, the combined normalised detectability, Df, has
been calculated by applying simplistic additive data fusion as:

Df ¼
 P

iF
2
iP

iH
2
i

!
e

þ
 P

iF
2
iP

iH
2
i

!
m

(2)

where

 P
i
F2
iP

i
H2

i

!
e

and

 P
i
F2
iP

i
H2

i

!
m

are the normalised detectability of

the electrical and mechanical signal, respectively, calculated using
equation (1). The results of this simplistic additive data fusion are
shown in Fig. 8, to the same scale as Fig. 7.

Fig. 8 demonstrates that each considered simple additive data
fusion of electrical & mechanical signals delivers increased
detectability with consistent behaviour over a range of REU fault
sizes andWRIG loads, plus increased robustness and confidence for
the operator. More complex data fusion algorithms could be
developed, dependant on experience and the response features of a
given system being monitored.

5. Conclusions

This paper presents an investigation of electrical & mechanical
signatures for DFIG rotor electrical unbalance (REU), identifying the
best diagnostic reliability condition monitoring indicators. It is
shown that by simple additive data fusion of specific electrical &
mechanical signatures fault detectability can be enhanced with the
following specific conclusions:

� Closed-form analytic expressions defining electrical & me-
chanical signal spectral content for healthy and faulty operating
conditions have been derived and validated, by comparison
between model predictions and tests on a fully instrumented
30 kWWRIG laboratory test rig. A comprehensive study of DFIG
REU electrical & mechanical spectral signatures has been made
using this high fidelity laboratory test system.

� It has been shown that the magnitude of slip-dependant side-
bands of a wide range of both supply frequency and slotting
harmonics show significant experimental increases under faulty
REU conditions.

� Specific side-bands, of current, power, torque and speed, giving
clear fault recognition, have been identified and give consistent

Fig. 5. Measured Ns spectra at 1590 rpm, balanced rotor winding & 300% REU.
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behaviour across the generator operating range. They will be
high diagnostic reliability indicators of REU.

� Experimental results show that REU produces consistent, high
fault and load sensitivity current ±2sf side-band spectral

a

b

Fig. 6. Measured Tm (a) & Av (b) spectra at 1590 rpm, balanced rotor winding & 300% REU.

Table 6
Measured Pe, Is, Tm, Ns & Av supply, H, and slotting, S, harmonic side-bands showing presence of REU faults, taken from Figs. 4e6, based on faults predicted in Tables 2e5.

Is Pe e

Electrical Signals

Supply harmonic side-bands HI1U HP1U e

HI3U HP3L, HP3U
HI5U HP5U
HI7U HP7aL, HP7aU

Slotting side-bands SI1L, SI1U SP1L e

SI2L, SI2U SP2L, SP2U

Mechanical Signals

Ns Tm Av

Supply harmonic side-bands HP1U HP1U
HP3U

HP7aU HP7bL

Slotting side-bands SP1U
SP2L, SP2U SP2L, SP2U
SP3L SP3L
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increases around slotting harmonic components, in addition to
traditionally used upper 2sf side-band of the fundamental
supply harmonic component.

� In the case of Pe, Tm & Ns signals DC component 2sf side-bands
have been shown to be the most sensitive and reliable REU
fault indicators. However, in the case of Pe & Tm, other side-
bands of supply frequency and slotting related spectral com-
ponents are also responsive to REU.

� Vibration signals, Av, also exhibit the presence of REU as 2sf side-
bands, clearly detectable in the vibration spectra. However
those side-bands show less consistent fault level recognition

across the generator operating range, because of the effect of
frame response. This suggests that, in addition to conventional
electrical signals, mechanical Av, Tm & Ns signals could be
monitored to diagnose generator electrical fault severity or
progression over time.

� Simplistic additive data fusion of simultaneous electrical &
mechanical signals real-time side-bands has demonstrated
enhanced REU fault recognition sensitivity and could be used in
a CMS to allow assessment of damage severity. This has been
confirmed experimentally in this paper for electrical & me-
chanical signal combinations of Is & Av, Pe & Ns or Is & Tm.
Confirmatory fault data from disparate sources increases
robustness and confidence and would be a crucial step for
successfully implementing condition-based maintenance.

Further work would be required to investigate how to apply the
information in this paper to a practical wind turbine generator CMS
system and propose more developed methods of data fusion than
presented here to improve damage severity assessment.

Table 7
REU progressively introduced into one rotor phase circuit.

Additional Phase Resistance [U] REU Level [%]

0.099 150
0.1485 225
0.198 300

Fig. 7. Normalised Detectability, D, from various separate electrical & mechanical signals, Is (a), Pe (b), Ns (c), Tm (d) and Av (e), from Table 6, for varying load and rotor fault severity.
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Abstract: The utilisation of conventional industrial converters for development of doubly-fed induction generator (DFIG) test
facilities poses an attractive prospect as it would provide proprietary commercial protection and functionality. However, standard
commercial converters present significant challenges in attainable DFIG operational capability. This is due to the fact that they
are designed for execution of a limited set of pre-programmed common control modes. They typically do not cater for execution
of complicated stator flux-oriented vector control (SFOC) schemes required for DFIG drive control. The research work presented
in this study reports a methodology that enables effective implementation of SFOC on industrial converters through a dedicated
external real-time platform and a velocity/position communication module. The reported scheme is validated in laboratory
experiments on an experimental DFIG test-rig facility. The presented principles are general and are therefore applicable to
conventional DFIG drive architectures utilising standard industrial converters.

1 Introduction
The penetration of large-scale wind turbines (WTs) into power
networks is increasing worldwide, with ambitious capacity
expansion plans driven by national targets for carbon reduction of
the electricity supply. The on-going expansion of wind power
generation has given rise to an increased research interest in the
process of WT electro-mechanical energy conversion; how this
process, enabled by the electric generator/drive system at the core
of the turbine, interfaces with the power network is of particular
interest [1–3]. To avoid complicated and potentially damaging full-
scale tests on sensitive and costly commercial WT units, the
practical aspects of WT energy conversion research are typically
underpinned by utilisation of laboratory facilities capable of
emulating WT electric drive behaviour. The development of real-
scale laboratory facilities for this purpose [4] can, however, pose
prohibitive limitations in the academic research community where
there is a need for lower cost yet representative test facilities to
enable proof of concept research of various aspects of WT
operations: these can range from model and control method
verification to examination of power quality, fault effects and grid
support capability [2–11].

Variable-speed constant-frequency electric drive topologies
remain attractive for WT applications due to the variability of the
mechanical power extracted from the wind. While alternatives have
emerged, the most prevalent utility-scale WT electric drive
architecture in use today remains that of the doubly-fed induction
generator (DFIG) [3], which has become a standard component for
the industry. The DFIG drive topology comprises a wound rotor
induction machine (WRIM) whose rotor is interfaced to the grid
through a back-to-back (alternating current (AC)/direct current
(DC)/AC) converter. The back-to-back converter comprises two
three-phase bidirectional voltage source converters: a rotor side
converter (RSC) and a grid side converter (GSC), sharing a
common DC link.

A DFIG drive provides controllability of the generated active
and reactive powers with the benefit of a reduced power electronic
converter rating [1]. DFIG drive operation in WT applications is
generally facilitated through a specialised vector control scheme
[12]. The type of control scheme used in DFIGs is defined by the
choice of reference frame. Whilst alternative control algorithms
continue to receive attention [13–15], the three synchronously
rotating schemes: stator flux-oriented control (SFOC), stator

voltage-oriented control and the air-gap flux-oriented control
schemes remain commonly used [16].

Due to the prevalence of DFIG use in existing installations and
its rapidly changing exploitation requirements, there is a
continuous need for better understanding and improvement of
operational aspects of these drives [17–19]. Credible emulation of
realistic WT vector-controlled DFIG conditions on test-rig
facilities is thus of significant interest for research purposes. The
majority of published practical research employs proprietary
converter system designs that allow direct access to switching
signals and thus the implementation of appropriately specialised
DFIG control schemes [2, 12, 20]. While such designs generally
enable real-time implementation of DFIG control utilising digital
signal processor (DSP)-based controllers, this approach is
challenging and complex for practical implementation. The use of
commercial off-the-shelf power electronics equipment in DFIG
research test facilities would be considerably more cost-effective,
provide a significant advantage in simpler to manage switching
signals in the real-time application, and also safer operation due to
the availability of proprietary commercial protection [21, 22].
Commercial converter systems application, however, poses
considerable challenges, as they are not designed to allow direct
access to switching signals control nor the application of non-
standard control routines, such as those required for DFIG
operation.

The literature treating DFIG control utilising commercial off-
the-shelf power electronics equipment is limited [19, 21, 22]. In
[21, 22], the RSC operates in open loop mode, since the standard
power electronics equipment is generally not designed to facilitate
straightforward application of DFIG vector control schemes. In
[19], achieving practical SFOC DFIG control required additional
computing and specialised software which imposed limitations in
switching synchronisation and therefore a requirement for system
de-rating, yielding a costly yet operationally constrained practical
SFOC DFIG facility.

This research proposes a straightforward and operational
method for establishment of closed loop control on grid-connected
DFIG test-rig facilities utilising commercial converter systems.
The presented solution for implementation of a conventional SFOC
routine requires a WRIM coupled to a commercial back-to-back
converter system operated through an external control platform.
The magnitude, frequency, and position of the DFIG rotor current
vector are calculated using an external real-time platform
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(dSPACE) and supplied to the RSC through a dedicated
communications module (SM-Resolver module). In comparison
with reported methods utilising off-the-shelf commercial
converters [19, 21, 22], the proposed methodology enables
effective implementation of SFOC: here, the RSC is operated in a
conventional closed-loop servo control mode employing the
external references provided by the dSPACE platform; the real-
time platform is operated to execute a proposed routine providing
the RSC real-time demand that is evaluated to ensure the
implementation of rotor current control following the principles of
SFOC. Furthermore, the GSC requires no modification and uses
commercial off-the-shelf filters and protection components. The
proposed solution was validated on an experimental DFIG test-rig
and enables the establishment of the SFOC scheme on DFIG test
facilities utilising off-the-shelf commercial converters. The
reported study significantly expands on the initial work reported by
the authors in [23], including full details of the complete controller
architecture implementation, its tuning, feedback provision,
experimental validation and an assessment of decoupling effects
representation.

2 Test-rig facility
The DFIG test-rig facility contains a 30 kW WRIM with an
industrial back-to-back converter interfacing its rotor circuit to the
mains. The converter comprises two commercial three-phase, four-
quadrant, AC drives (CT UNIDRIVE SP-4401) [24] coupled by a

DC link. The AC drives are manufactured to enable operation in a
variety of open-loop or closed-loop control modes by executing
standard vector control algorithms for conventional induction and
servo machines.

The challenge in implementing a practical SFOC scheme on the
commercial RSC is that its proprietary design limits the available
operating modes to only standard pre-programmed control
strategies [24]. To overcome this limitation, a dSPACE 1103 real-
time control platform and a commercial speed and position
feedback interface device (CT SM-Resolver module [25]) were
used. The general layout of the DFIG test-rig facility is illustrated
in Fig. 1. A more detailed connection schematic of the DFIG test-
rig facility is shown in Fig. 2. The WRIM is a four-pole, three-
phase, 50 Hz, 415 V, 225 frame size design and was mechanically
coupled to a 40 kW DC machine. The stator windings of the
WRIM were connected to the grid whilst its rotor windings were
supplied through the back-to-back converter. The separately
excited DC machine was used as a prime mover during the
experiments. The DC machine was controlled by a commercial,
variable-speed, DC drive (CT MENTOR II, M75R [26]) working
in speed control mode. It operated at a predefined constant speed
(n*m in Fig. 2) or torque (T*DC in Fig. 2) during the experiments.
The speed or torque was controlled through the dSPACE platform,
which transmitted the desired speed and torque reference values
from its digital-to-analogue channels (DACs) to the analogue-to-
digital channels of the DC drive. These values were appropriately
scaled in a dSPACE-executed Simulink real-time algorithm to
match the ratings of the DC drive and motor. 

The DC motor shaft speed and position were measured by a
1024 ppr incremental encoder. The encoder outputs were fed to the
DC drive, to enable speed control of the motor, and also to the
dSPACE platform, to enable real-time implementation of the DFIG
SFOC scheme, as illustrated in Fig. 2. The dSPACE platform
controlled the behaviour of the RSC by manipulating the
magnitude, frequency and phase of the DFIG rotor currents
through an appropriate Simulink implementation of the SFOC
scheme. This was achieved by setting the RSC to operate in servo
control mode with rotor speed and position feedback for closed-
loop control of the DFIG rotor currents. The GSC was set to
operate in regenerative control (Regen) mode. Furthermore, the
GSC maintained the DC link voltage at a constant pre-set value of
700 VDC during the experiments.

The DFIG stator and rotor currents were measured using LEM
LA 55-P current sensors, and the stator voltages were measured
using LEM LV25-600 voltage Hall effect transducers. The stator
active and reactive powers were calculated in the dSPACE
platform from the measured stator currents and voltages. The
dSPACE platform was also used for recording the investigated
electrical signals of interest from the DFIG test-rig facility such as
the stator currents, rotor currents, stator active and reactive powers
etc. The WRIM parameters were obtained from the standard
characterisation tests, and are presented in the Appendix [11, 27].

Fig. 1  Experimental DFIG test-rig facility layout
 

Fig. 2  Connections schematic of the experimental DFIG test-rig facility
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3 SFOC using commercial converters
3.1 Conventional SFOC scheme

This section describes the conventional SFOC scheme. SFOC
provides independent control of the DFIG stator active and reactive
powers by means of regulation of the two-axis rotor currents (I*rd
and I*rq) in a synchronously rotating reference frame (dq). The
variables of the synchronously rotating reference frame are DC
quantities in the steady state. The d-axis of the reference frame is
conventionally aligned with the stator flux linkage vector in the
SFOC scheme [19]. The general phasor diagram of the DFIG
variables relevant for SFOC implementation is illustrated in Fig. 3,
where: αsβs is the stationary (stator) reference frame; αrβr is the
rotor reference frame; dq is the synchronously rotating reference
frame; Vs is the stator voltage vector; ψs is the stator flux linkage
vector; Ir* is the reference rotor current vector; Ird* and Irq* are the
d- and q-axis components of the reference rotor current vector,
respectively; ωs is the angular frequency of the synchronously
rotating reference frame; ωm is the electrical frequency of the rotor;
θi is the position of the reference rotor current vector with respect
to the d-axis of the synchronously rotating reference frame; θs is
the orientation angle; θr is the electrical rotor angle; and, θslip is the
electrical slip angle. 

The separate regulation of the DFIG stator active and reactive
powers is facilitated through the independent control of the DFIG
rotor currents by utilising the direct relationship between the stator
active and reactive powers and their corresponding rotor current
components in the stator flux-oriented synchronous reference
frame, which can be calculated as [8]

Ps = − Vsq
Lm
Ls

Irq, (1)

Qs = Vsq
ψsd
Ls

− Vsq
Lm
Ls

Ird, (2)

where Vsq is the q-axis component of the stator voltage vector; Lm
is the magnetising inductance; Ls is the stator self-inductance of the
DFIG; Irq is the q-axis component of the rotor current vector; ψsd is
d-axis component of the stator flux linkage vector; and, Ird is the d-
axis component of the rotor current vector. Equation (1) shows that
the stator active power is a function of the q-axis rotor current
whereas (2) shows that the stator reactive power depends on the d-
axis rotor current. In addition, the stator active and reactive powers
are only dependent on the q-axis stator voltage term if the stator
phase resistances are neglected since the stator voltage vector is
assumed to align with the q-axis of the synchronously rotating
reference frame, as shown in Fig. 3.

Typically, the structure of the conventional SFOC comprises
two cascaded control loops for the d- and q-axis: an outer (power)
control loop and an inner (current) control loop [28]. The structure
of the conventional SFOC is shown in Fig. 4 [29]. 

The outer control loops are used to calculate the reference dq-
axes rotor current values for the inner control loops. Although (1)
and (2) can be implemented in open-loop, each loop generally
employs a closed-loop proportional–integral (PI) controller, which
reduces sensitivity to parameter errors. The inner control loops
establish the reference dq-axes rotor voltages and thus, the
reference rotor voltage vector for the desired DFIG power output.
The relationship between the rotor voltages and currents is [30]

Vrd = RrIrd + Lc
dIrd
dt − ωslipLcIrq, (3)

Vrq = RrIrq + Lc
dIrq
dt + ωslipLcIrd + ωslip

Lm
Ls

ψsd, (4)

where Vrd is the d-axis component of the rotor voltage vector; Rr is
the stator referred rotor resistance per-phase; Lc is the leakage
coefficient; ωslip is the angular slip speed; and, Vrq is the q-axis
component of the rotor voltage vector.

The SFOC inner (current) controllers are generally tuned
through (3) and (4). The third term in (3) and (4) is known as the
cross-coupling term whereas the fourth term in (4) is the
perturbation term. The decoupling and feed-forward terms (as
illustrated in Fig. 4) are generally applied to the outputs of the
inner controllers, in order to eliminate the rotor currents' cross-
coupling and speed dependency, respectively [20]. The
implementation of decoupling provides an improvement in the
tracking performance of the inner controllers, as well as an easier
tuning procedure [20].

In general, the SFOC outer (power) controllers are tuned
through (1) and (2). The first term in (2) is dependent on the stator
flux and is considered as a constant disturbance effect [28].
Therefore, this term is removed from the d-axis outer control loop
using compensation, as illustrated in Fig. 4. Furthermore, removingFig. 3  General phasor diagram of the DFIG variables

 

Fig. 4  Conventional SFOC structure
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the disturbance term also enables the same transfer function to be
used for tuning the dq-axes outer control loops.

3.2 SFOC implementation on commercial converters

The implementation of the SFOC scheme (which utilises cascaded
control loops) using commercial converters is complicated by the
fact that the inner control loops must reside in the commercial
RSC. To protect the power switches, there is no direct control of
the RSC voltages, so the inner controllers must be executed
through one of the commercial converters pre-defined control
mode options. For this reason, the SFOC scheme was realised in
this work by implementing the outer control loops on the dSPACE
platform (as outlined in Section 1) and linking their outputs with
the inputs of the inner control loops embedded within the RSC
operating in servo mode, as illustrated in Fig. 5a. In servo mode,
reference torque and angle values were used to generate the
internal reference dq-axes currents. 

The RSC included the inner control loops. However, the RSC
imposed a limitation, as it did not allow access to the outputs of its
PI controllers (see Fig. 5a), where the SFOC decoupling terms
(shown in Fig. 4) should be included. The effect of omitting
decoupling is analysed in the Appendix and is found acceptable
for: changes in the outer control loop such as demanded power
flow; slowly varying disturbances, for example, wind speed; any
operation at close to synchronous speed. However, with decoupling
omitted, the controller is not able to reject rapid disturbances in the
inner loop, especially at high slip, which means that the system
would not be suitable for network fault studies. Under these
conditions, conventional stator active power/stator reactive power
(PQ) control would not be used anyway. For low-voltage ride-
through additional hardware or control is required, since the field-
oriented assumptions are invalid if the stator flux varies [31].
Furthermore, in principle, assuming the commercial converter
system manufacturer's proprietary knowledge on the design
features of the servo control mode decoupling routine is available,

it could be modified to be adapted to the execution of an SFOC
characteristic decoupling scheme. This knowledge, however, is
generally seen as commercially sensitive and was not available in
this study, and thus, in addition to the points raised previously in
this paragraph, decoupling has been omitted from the proposed
SFOC practical implementation routine.

The magnitude control of the rotor currents was achieved by
using the external torque reference parameter of the RSC, as shown
in Fig. 5b. The reference rotor currents provided by the outer
control loops were used to define the torque reference value in the
dSPACE platform, which was then passed to the RSC. The
calculated torque reference value must be appropriately scaled for
the voltage range of the analogue input of the RSC. The scaling
shown in the diagram in Fig. 5b is calculated as

Scaling = analogueinputfullscalevoltage
RSCMAXcurrentrating . (5)

The scaled torque reference value was generated by a DAC of the
dSPACE platform (shown in a red box, Fig. 5b) and then passed to
the RSC analogue input and converted back to the corresponding
current value internally. Depending on the relationship between the
desired and measured rotor currents, the pre-programmed servo
control routine of the RSC created the appropriate excitation
voltages for the DFIG rotor windings (shown in the blue box,
Fig. 5b).

The frequency and phase control of the rotor currents were
achieved using an SM-Resolver module, as shown in Fig. 5c. For
the servo control mode of operation, the RSC controller assumes
that the output current vector is aligned with the q-axis of the servo
reference frame [32]. A servo reference frame, therefore, had to be
introduced to the general phasor diagram of Fig. 3, to illustrate the
appropriate orientation that is needed to be provided to the RSC
servo controller to ensure correct implementation of the SFOC
scheme. The resultant phasor diagram is shown in Fig. 6, where:

Fig. 5  Real-time implementation of the SFOC scheme
(a) General architecture of the SFOC implementation, (b) Magnitude control of the SFOC scheme, (c) Real-time speed and position control of the SFOC scheme
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dservo and qservo are the servo reference frame d- and q-axis,
respectively, and, θconv is the appropriate reference position angle
for the RSC servo controller. The servo controller reference
position, θconv, was chosen to align qservo with the SFOC defined
reference rotor current vector, Ir*, and thus, ensured appropriate
implementation of the SFOC scheme. θconv was obtained using the
instantaneous angle between the known servo dservo-axis and the
rotor αr-axis positions, as illustrated in Fig. 6, which can be
calculated from

θconv = θi + θslip − 90∘ . (6)

The dSPACE platform was used to emulate the resolver real-
time feedback signals matching the established servo controller
orientation angle (shown in the red box, Fig. 5c). The emulated
resolver output signals were connected to the corresponding inputs
of the SM-Resolver module (shown in Fig. 2), to ensure the
appropriate orientation of the RSC controller.

Reliable determination of the orientation angles shown in Fig. 6
is therefore essential for successful implementation of SFOC. The
correct estimation of the position of the stator flux linkage space
vector is particularly important. A common approach to estimating
the flux vector position is based on neglecting the stator resistive
voltage drop and assuming the flux linkage vector lags the stator
voltage vector by 90 electrical degrees [20]. Hence, the position of
the flux linkage vector with respect to the stator reference frame
(θs) can readily be obtained from the three-phase stator voltages
measurements using a phase-lock-loop [27]. The rotor reference
frame position with respect to the stationary reference frame (θr)
was obtained from the shaft-mounted encoder output signals,
multiplied by the pole-pairs of the WRIM. θr was then used in
combination with θs to determine the real-time value of the rotor
slip angle (θslip = θs − θr) in dSPACE. The real-time slip angle
value was used to transform the relevant three-phase rotor variables
to the synchronously rotating reference frame.

3.3 Controller tuning procedure

The tuning procedure of the proposed SFOC scheme is summarised
in this section. The SFOC was tuned using a conventional transfer
function approach [29], whilst taking care to ensure the parameters
of the inner controllers, residing within the RSC, were
appropriately identified and set. Choosing appropriate time
constants for both the outer and inner control loops was key to
ensuring adequate controller performance. The separation of the
outer and inner control loops was enabled by choosing different
time constants and noting that the time constant of the inner control
loops should ideally be at least five times smaller than the outer
control loops [28]. Therefore, the outer control loops would not

react to the faster inner control loops and thus, the inputs of the
inner control loops can be accurately calculated. In addition,
choosing a smaller time constant for the inner loops enables their
representation as a constant gain for the outer control loops’
analysis.

The control parameters of the outer and inner control loops
were calculated from their closed-loop transfer functions. These are
the proportional gain (Kpo is the outer control loops and Kpi is the
inner control loops) and the integral gain (Kio is the outer control
loops and Kii is the inner control loops). The closed-loop transfer
function of the outer control loops can be expressed as

Ps
Ps*

= Qs
Qs*

= 1 + s Kpo/Kio

1 + s
1 + Kpo −VsqLm/Ls

Kio −VsqLm/Ls

(7)

and, the transfer function of the inner loops as

Ird
Ird*

= Irq
Irq*

= Kii/Lc + s Kpi/Lc
Kii/Lc + s (Rr + Kpi)/Lc + s2 . (8)

Assuming Kpo ≪ Kio and Kpi ≪ Kii, (7) and (8) can be
approximated as first-order and second-order transfer functions,
respectively [28]. This assumption simplifies the calculation of the
control parameters of the outer and inner control loops. In this
work, Kpo was chosen to be zero. Therefore, the only control
parameter required for the outer control loops was Kio, which is
calculated by

Kio = 1
τo −VsqLm/Ls

, (9)

where τo is the time constant of the outer control loops. The grid
voltages were assumed to be stiff and the stator inductances were
considered constant for the purpose of this calculation. Kio was
calculated for the WRIM installed in the experimental DFIG test-
rig facility as −0.009 V−1 s−1 with a time constant of 0.54 s.

The inner controllers needed to be tuned appropriately to reflect
the proposed SFOC scheme. In conventional applications, the RSC
control loop parameters are recommended to be determined using
the proprietary auto-tuning routine [24], which automatically
measures the WRIM parameters and adjusts the parameters of the
inner controllers [33]. However, the auto-tuning routine was not
capable of obtaining the parameters of the RSC controllers for the
proposed SFOC scheme, since the RSC assumes it is operating
with a synchronous machine in servo control mode. The
parameters of the inner controllers are therefore first determined
using the second-order transfer function given in (8). The
bandwidth and damping factor of the inner controllers were set to
18 Hz and 1.8 in this study, respectively. This provided a time
constant of 0.005 s and a Kii and Kpi of 34VA−1 s−1 and 1 V A−1,
respectively. Once determined, the gains were programmed into the
RSC controllers using their proprietary software interface.

3.4 Resolver feedback emulation

The accuracy of the emulated real-time resolver feedback for the
reference frame orientation of the RSC controllers is vital for
ensuring good performance of the proposed SFOC scheme. The
calculation of the emulated resolver output signals required the
excitation signal, Vexc(t), provided by the commercial SM-Resolver
module, as shown in Fig. 7. The output sine and cosine signals of
the real-time resolver were then emulated in dSPACE from the
calculated real-time reference position angle for the RSC
controllers, θconv, using the following equations [34]:

Vsin = gVexcsin θconv(t) sin ωct , (10)

Vcos = gVexccos θconv(t) sin ωct , (11)

Fig. 6  Resultant phasor diagram
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where g is the resolver turns ratio; and Vexc and ωc are the
magnitude and angular frequency of the excitation signal,
respectively. 

The SM-Resolver module parameters had to be appropriately
set through the RSC proprietary settings menu to obtain the correct
position feedback. The excitation signal frequency was fixed at 6 
kHz in this work whilst the resolver turns ratio and the magnitude
of the excitation signal was set to 2:1 and 4Vrms, respectively. The
dSPACE emulated resolver output signals were sent to the SM-
Resolver module, which provided the orientation feedback for the
RSC controllers to generate the desired frequency and phase of the
rotor current through the ‘position’ signal, as shown in Fig. 5c.
This signal provided the absolute position of the rotor current
vector with respect to the d-axis of the servo reference frame [32].

The synchronously measured position and emulated resolver
output signals for a rotor current frequency of ⊄3.3 Hz,
corresponding to a slip of (⊄100 rpm), are illustrated in Fig. 7. The
emulated resolver output is seen to be at twice the frequency of the
corresponding position signal due to the SM-Resolver module
design, which operates to provide mechanical position information
[25].

To obtain a good trade-off between achieving more sinusoidal-
emulated resolver outputs and maintaining a sufficient execution
speed of the SFOC scheme on the dSPACE platform, it was
important to select an appropriate sampling rate in dSPACE. The
effect of the dSPACE sampling rate choice on the emulated
resolver outputs is illustrated in Fig. 8. Fig. 8 shows the
corresponding signals measured at the DAC outputs of the
dSPACE platform (identified in Fig. 2). Fig. 8 shows the emulated
resolver output signals for the applied sampling frequencies of 55,
25, and 10 kHz, respectively. 

The recorded data show that the emulated resolver outputs
become distorted when the dSPACE sampling rate comes close to
the resolver excitation frequency of 6 kHz. This can cause potential
errors in the calculation of the frequency and position of the rotor
current vector. In addition, for sampling frequencies >70 kHz, the
controller performance can also degrade, as dSPACE is unable to
complete the required control algorithm calculations within the set
sample period. In this work, the optimal operating range of the
dSPACE platform was found to be between 55 and 65 kHz in the
experiments.

4 Results
The implemented SFOC scheme is experimentally evaluated in this
section using the laboratory DFIG test-rig facility described in
Section 2. A typical step change in the time-domain of the stator
active and reactive power demands was applied for validation of
the proposed SFOC scheme. This is a conventional method of
assessing DFIG controller performance [12, 20, 28] since the
separate implementation of active and reactive power step changes
provides different behaviour and thus, operational analysis of the
executed SFOC scheme. The results of step changes in the stator
active and reactive power demands are presented in Figs. 9 and 10. 

The DFIG test-rig facility was operated at an arbitrary super-
synchronous operating point of 1560 rpm (0.04 slip) during the
experiments. In the active power demand step change test, the
stator active power demand was controlled to change from −3 to
−6 kW (power is negative when generating since the motoring
convention was used) at 3 s, whilst the stator reactive power
demand was kept at a constant value of 0 VAr. In the reactive
power demand step change test, the stator reactive power demand
was set to change from 0 VAr to 2 kVAr at 5 s, whilst maintaining
the stator active power demand at a constant value of −5 kW.

The effects of the stator active power step change on the
measured DFIG electrical signals during the experiments are
shown in Fig. 9, whilst Fig. 10 shows the effects of the stator
reactive power step changes on the measured DFIG electrical.

The alignment of the stator voltage and flux vectors during the
SFOC control reference frame orientation angle calculation (as
discussed in Section 3) enables the regulation of the d- and q-axis
rotor current components in relation with the stator reactive and
active powers, respectively. This means that the active power step

change caused a major effect on the q-axis rotor current
component, whereas the d-axis rotor current remained principally
affected by a change in the stator reactive power, as can be
observed from the experimental data presented in Figs. 9c and 10c,
respectively. These figures also show that the d- and q-axis rotor
currents exhibited a very minor variation as a result of the
implemented active and reactive powers step change, respectively.
This arises due to an amalgamation of effects related to inherent
inaccuracy in orientation angle calculation such as neglecting stator
resistance [20], and the previously discussed omission of the
decoupling effects on the RSC embedded inner controller; the
magnitude of the observed variation in the experimental results is,
however, seen to be negligible and these effects, therefore, deemed
acceptable for the purpose of this study.

The response time of the outer and inner controllers to the step
changes recorded in Figs. 9a to 10b matched the design parameters
calculated in Section 3. The calculated time constant of the outer
control loops (≈0.54 s) shows good agreement with the measured
responses of the outer control loops. The inner control loops are
seen to effectively follow the references set by the outer control
loops, due to their time constants, which are chosen to be faster
than those of the outer controller. The response of the controllers
used in this study is considered representative of WT applications,
characterised by relatively slow dynamics of wind speed and
therefore generator rotational speed change [10, 35, 36].

A small percentage of ripples is generally seen to be present in
the measured data. This was found in the experiments to be largely
dominated by the shaft rotational frequency components arising
from the small inherent mechanical unbalances in the test-rig, as
well as the prominent space harmonic effects inherent to the
examined WRIM design [11]. Similar effects have been observed
in previous publications [20]. In addition, the effects of the speed
ripple caused by the inevitable inherent electrical asymmetry of the
test-rig were also found to contribute to the observed SFOC signal
ripple [37]. Figs. 9c and 10c also show that the ripple in the d-axis
reference rotor current was higher than that observed in the q-axis
reference rotor current. This difference is largely caused by the
compensation term in the d-axis outer control loop, as stated in (2)
and shown in Fig. 4.

In general, the measured rotor currents are seen to appropriately
change to follow the set demand in the DFIG stator active and
reactive powers imposed through the SFOC scheme. Rotor current
control is enabled by the demanded rotor current position
implemented on the RSC through the SM-Resolver module and the
external dSPACE platform. Figs. 9 and 10 show that the presented
SFOC scheme implementation procedure for DFIGs enables
effective practical control of the rotor currents and thus, the
generated stator active and reactive powers using standard
commercial converters. Consistent results have also been observed
at other operating speeds on the test-rig facility but are not included
in this study for brevity.

5 Conclusions
This study reports an experimentally validated procedure for
implementing an SFOC scheme on a DFIG practical facility
utilising standard off-the-shelf converters. The presented solution
provides a competent means of establishing SFOC capability in
DFIG drive topologies utilising commercial converters, which do
not inherently possess the facility of the SFOC and do not allow
the end-user to define switching device control modes.
Furthermore, the presented solution provides an advantage of
retaining the full protection of the system as it utilises off-the-shelf
commercial equipment, and imposes no requirement for the
development of proprietary converter design and protection to
allow SFOC execution.

The proposed procedure was evaluated in real-time experiments
on a laboratory DFIG test-rig facility involving step changes in the
power demand of the stator active and reactive powers. Standard
active and reactive power step change tests were separately
implemented on the DFIG test-rig to evaluate the performance of
the SOFC implemented by the proposed method. The measured
step change response of the control loops shows good agreement
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with the calculated settling times. The minor coupling during
transients, as well as a small percentage of ripple, was identified in
the measured data and found to be an amalgamation of the effects
inherent of the examined WRIM design and the proposed SFOC
implementation method, but more importantly, manifested at a low
level which was deemed acceptable for this research. The
experimental results showed that the presented work enables the
practical establishment of an operative SFOC scheme allowing the
DFIG rotor currents and thus the generated stator active and
reactive powers to be effectively controlled in the steady state. The
reported test results are for a typical super synchronous operating
speed of 1560 rpm, however, consistent performance has been
observed in the test system throughout the operating speed range.
In addition, a study of the effects of the proposed scheme's
limitations in representation of decoupling effects is reported,
suggesting that these do not adversely affect its operation for
changes in the outer control loop such as demanded power flow;
slowly varying disturbances, for example, wind speed; or any
operation at close to synchronous speed.

The details of the practical implementation of the SFOC scheme
on the commercial converter, the tuning of the controller
parameters and the appropriate controller orientation feedback
requirements were presented, to enable full understanding of the
reported solution. Whilst the proposed SFOC practical
implementation procedure has been applied and validated on a
specific commercial converter in this study, the proposed principles
are generally applicable to other modern commercial converters
and could, therefore, be utilised in alternative DFIG architectures,
including multi-level topologies since most converters support a
torque reference input and resolver interface.
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Fig. 7  Synchronously measured position angle for the RSC servo
controller and emulated resolver output signals
(a) Position signal, (b) Emulated resolver output signals

 

Fig. 8  Emulated resolver outputs measured at the dSPACE DACs
(a) Sampling frequency at 55 kHz, (b) Sampling frequency at 25 kHz, (c) Sampling
frequency at 10 kHz

 

Fig. 9  Stator active power step change implementation, 1560 rpm
(a) Measured and reference stator active powers, (b) Measured and reference stator reactive powers, (c) Measured and reference dq-axis rotor currents, (d) Measured three-phase
rotor currents
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8 Appendix
 
The parameters of the WRIM parameters are presented in Table 1. 

8.1 Omission of decoupling

Assuming that the controller orientation is correct and that the
converter is ideal and the stator dynamics is not excited, the
combined controller and WRIM can be represented in the
synchronous reference frame, as shown in Fig. 11 (where coupling
within the WRIM model is included). To simplify the analysis, the
magnetising term in the reactive power and the associated
compensation in the controller have been omitted, since they are
assumed to cancel. 

Full analytical expressions can be derived for the transfer
functions between the steps in the reference inputs (Ps* and Qs*, or
Ird* and Irq*) and the outputs (Ps, Qs, Ird, and Irq), respectively.
Fig. 12 shows the magnitudes of these transfer functions as a
function of frequency at 4% slip, i.e. the operating point used in the
presented tests, and 30% slip, i.e. the typical speed range of a
DFIG. The direct trace shows the response in the direct axis, Irq/
Irq* (top) and Ps/Ps* (bottom), which is independent of the slip.
The coupled traces show the disturbance in the opposite channel,
Ird/Irq*, Qs/Ps*, at 4 and 30% slip, respectively. Since the coupling
terms depend on the slip, there is no coupling at a synchronous
speed. It can be seen that at the operating point of 1560 rpm (i.e.
4% slip), the attenuation is >100 (40 dB); there is a less good
rejection of disturbances directly injected into the current loop
where the attenuation is a factor of 10 (20 dB). At 30% slip, there
is still a good rejection of disturbances in Ps and Qs, but steps
injected directly into the current loop show a similar magnitude in
the coupled channel compared with the direct channel. 

The use of the servo controller means that the q-axis of the RSC
is aligned with the desired rotor current rather than the d-axis
alignment with the stator flux. The PI controller can be written in
the RSC frame (denoted 1) as

dVr1dq*
dt = Kpi

d
dt Ir1dq* − Ir1dq + Kii Ir1dq* − Ir1dq . (12)

Mapping values to the synchronous reference frame using the angle
transformation: e− j(θi − π /2), gives

dVrdq*
dt = Kpi

d
dt Irdq* − Irdq + Kii Irdq* − Irdq

−jωi Vrdq* − Kpi Irdq* − Irdq .
(13)

Hence, the RSC introduces further coupling into the inner current
loop that depends on the rate of change of the current angle with

time, ωi. This term is zero in the steady state and because of the
low bandwidth of the outer loop, it is small during transients. The
experimental results in Figs. 9 and 10 show a negligible effect from
this coupling.

The analysis presented above neglects the dynamics of the
stator circuit. A full state-space analysis shows poles from the
stator circuit at a frequency close to 50 Hz. The rotor current loop
is usually tuned to avoid exciting the stator dynamics. Where this is
not possible, a more advanced controller would be required [38],
and the commercial drive used in this work would not be suitable.

Table 1 WRIM parameters
Parameters Value
stator current 56 A
full-load power 30 kW
full-load speed 1470 rpm
stator resistance 0.09 Ω/phase
rotor resistance 0.066 Ω/phase
stator leakage inductance 0.911 × 10−3 H/phase
rotor leakage inductance 0.459 × 10−3 H/phase
magnetising inductance 44.6 × 10−3 H/phase
effective turns ratio 1.33
 

Fig. 11  Control structure for coupled system analysis
 

Fig. 12  Coupling rejection: direct axis (blue solid line); coupled axis @
4% slip (black dashed line); coupled axis @ 30% slip (red dotted line)
(a) Current loop, (b) Power loop
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Abstract—Determining the magnitude of particular fault
signature components (FSCs) generated by wind turbine
(WT) faults from current signals has been used as an effec-
tive way to detect early abnormalities. However, the WT cur-
rent signals are time varying due to the constantly varying
generator speed. The WT frequently operates with the gen-
erator close to the synchronous speed, resulting in FSCs
manifesting themselves in the vicinity of the supply fre-
quency and its harmonics, making their detection more
challenging. To address this challenge, the detection of ro-
tor electrical asymmetry in WT doubly fed induction gen-
erators, indicative of common winding, brush gear, or high
resistance connection faults, has been investigated using a
test rig under three different driving conditions, and then an
effective extended Kalman filter (EKF) based method is pro-
posed to iteratively estimate the FSCs and track their mag-
nitudes. The proposed approach has been compared with
a continuous wavelet transform (CWT) and an iterative lo-
calized discrete Fourier-transform (IDFT). The experimental
results demonstrate that the CWT and IDFT algorithms fail
to track the FSCs at low load operation near-synchronous
speed. In contrast, the EKF was more successful in tracking
the FSCs magnitude in all operating conditions, unambigu-
ously determining the severity of the faults over time and
providing significant gains in both computational efficiency
and accuracy of fault diagnosis.

Index Terms—Condition monitoring (CM), continuous
wavelet transform (CWT), doubly fed induction genera-
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I. INTRODUCTION

IN RECENT years, wind energy has experienced substan-
tial growth compared to other forms of power generation.

While alternatives are emerging, a large proportion of currently
installed and manufactured wind turbines (WTs) continue to
use induction generators. The doubly fed induction generator
(DFIG) in particular remains an attractive generator technology
with a strong market position [1] due to its unique wide-range
variable-speed-constant-frequency operating capability coupled
with low-power electronic inverter rating requirements and ef-
fective power flow control.

Undetected generator faults in DFIGs have been associated
with high failure rates, replacement of major components, and
subsequent significant downtime [2]. The primary cause of this
higher downtime in the offshore environment is the increased
need for heavy-lifting vessels [3]. Usually, faults evolve from
an incipient stage to a progressively more severe condition and
eventually turn to failure. Early fault detection can hence avoid
catastrophic failures and downtime reduction through enabling
careful condition-based maintenance planning [4]. An analysis
of failure statistics showed that 20% to 70% of the generator
faults were related to bearings, 3% to 38% to the stator, 7%
to 50% to the rotor, and the rest were categorized as “other”
[5]. Another study, which reviewed 80 journal papers published
by the IEEE and IEE/IET on the subject of induction machine
failure statistics over the past 26 years, reported that 21% of
generator faults were bearing problems, 35% stator related, and
44% rotor related [6]. Rotor electrical unbalance is identified as
an indicator of some of the major contributors to WT generator
failure rate [7], [8]. This condition is representative of a number
of recognized rotor electrical fault modes in DFIG systems such
as brush gear degradation, rotor winding fault, and/or improper
connection between the slip ring unit and the rotor cable leads
and its analysis and detection have been the topic of a number
of studies conducted on representative academic scale test rig
systems and MW-size DFIG field applications [4]–[12]. Unde-
tected electric faults may gradually develop to a major short
circuit, and can cause severe damage to the machine and the
system to which it is connected [13]. Therefore, early detection
of rotor electrical unbalance faults of in-service generators is
essential to eliminate consequential damage.

Previous works [14], [15] showed that faults in electrical ma-
chines can be detected in a noninvasive manner by either current
or power signal analysis. The use of current and power signals
analysis has consequently been proposed as a general tool for
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WT fault detection [16]–[20]. In particular, the diagnostic ap-
plication of stator current signature analysis to detect DFIG
rotor asymmetry conditions has been studied on laboratory test
rigs, simulation studies [5], [8], [9], [21], [22], or analytical
formulations of fault frequencies [10], [11]. Rotor electrical un-
balance has been emulated by connecting external resistances
to machine windings [4]–[11], [23], [24].

The available literature indicates that rotor asymmetries gen-
erate particular spectral signatures (called fault signatures) in
the frequency spectra of WT current signals. Theoretical and
analytical formulations of fault signature frequencies and their
generation were attempted in [8], [10], and [25] to define the
signal spectral component that can be monitored for diagnos-
tic purposes. To date, various WT condition monitoring (CM)
techniques that aim to utilize these and similar diagnostic sig-
nals have been developed [17], [19], [26], [27]. However, a fully
satisfactory method to detect the full range of WT faults in their
early stages has not been achieved yet, and false alarms are still
frequently reported from sites with the generator being a signif-
icant contributor [2], demonstrating the need to optimize these
alarms. The root cause of generator false alarms can be related
to the following problems.

1) The lack of clear understanding of the diagnostic in-
formation embedded in the DFIG stator current spectral
content.

2) The lack of signal processing tools with sufficient sensi-
tivity and reasonable computational efficiency to extract
the instantaneous amplitude (IA) of fault signature com-
ponents (FSCs) from the WT current signals.

The first problem has largely been addressed in [9], [10],
[21], and [28] with a comprehensive theoretical analysis of the
DFIG stator current spectrum content for the machine operating
in steady state, both with and without supply and/or winding
asymmetries. The research reported in this paper will focus on
a potential solution to address the second problem where the
FSCs in the WT current signals have nonlinear and nonstation-
ary characteristics due to the constantly varying shaft rotating
speeds caused by turbine variable loads [29]. Furthermore, a
wide range of CM technique performance assessment under
relevant transient conditions has not been widely reported in the
literature, particularly when the machine operates at low load
near to synchronous speed. As a result, in these conditions, the
FSCs are particularly difficult to detect or differentiate using
existing methods, which may lead to an increase in the false
alarms for these conditions. This problem has not received at-
tention in reported literature despite the fact that actual WTs
frequently operate at low load conditions where the generator
rotational speed is close to the synchronous speed, motivating
the research in this study to propose potential solutions.

In this paper, we introduce an effective approach to enhance
the detection of rotor electrical asymmetry in WT DFIGs by
analyzing the generator current signals. First, the analytical ex-
pressions defining rotor electrical asymmetry fault signature in
DFIG stator current described in [9] and [28] have been used to
enable FSCs to be recalculated over time as a function of ma-
chine speed. Second, an adaptive extended Kalman filter (EKF)
tracker has been proposed to extract the IAs of the FSCs based

on the corresponding machine speed signal and the estimated
error covariance. At each time step, the calculated FSCs along
with those extracted from the measured current signal are pro-
cessed by the EKF to predict the future state of the FSCs, and
continuously update the IAs of FSCs as real-time monitored
signal data samples become available. The proposed technique
has been validated experimentally on a WT drive train test rig
with two fault levels of rotor electrical asymmetries at three dif-
ferent driving conditions whose variability is representative of
WT generator field operation. The performance of the proposed
approach is compared with some of the leading WT generator
CM techniques [9], [30]. The reported experimental findings
demonstrate clear and significant gains in both the computa-
tional efficiency and the diagnosis accuracy using the proposed
technique.

This paper is organized as follows. Section II describes the
signature of rotor electrical asymmetry in the DFIG current sig-
nals and the use of continuous wavelet transform (CWT) and
iterative localized discrete Fourier-transform (IDFT) for fre-
quency tracking. Section III describes the methodology used
in the present work using an EKF for diagnosing rotor elec-
trical asymmetry. Section IV describes the data available and
employed in this paper. In Section V, the results obtained for
three test cases are presented using the EKF, CWT, and IDFT
tracking algorithms. Finally, conclusions are drawn and final
remarks are made in Section VI.

II. FREQUENCY TRACKING AND FAULT DETECTION

The rotor electrical asymmetry condition in DFIGs is mani-
fested through a range of additional sideband components in the
stator current signal spectrum; it was experimentally proven in
[9] and [28] that the rotor electrical imbalance faults in a WT-
based DFIG can give rise to additional frequency components
in the stator current at frequencies given by

ff =
(

I ± k(1 − s)
p

)
.fs (1)

where ff are the series of the calculated FSCs related to the fault,
fs is the fundamental supply frequency, k is the component order
(k = 1, 2, 3, ...), s is the slip, I is a constant that relates to air-gap
field space harmonics, and p is the number of pole pairs.

Rotor electrical imbalance faults could be detected by moni-
toring the magnitudes of the components in (1) over time, taking
into account variable operating conditions. Efforts have been
made to extract the magnitude of the FSCs using a CWT [31]–
[33]. However, the CWT cannot achieve fine resolution in both
the time and frequency domains simultaneously. In addition,
high computational time (CT) is needed to obtain good results
with the CWT, making it unsuitable for large size data analysis.
To overcome this, another frequency tracking methodology was
proposed in [9] using the IDFT algorithm to extract the energy
of the FSCs, defined in (1), over time. The IDFT has good com-
putational efficiency and applies a discrete Fourier analysis over
a narrow band around the frequency of interest to extract a peak
amplitude, which is assumed to be the amplitude of the FSC
within the predefined window. However, the challenge with this
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assumption is that the FSC can be difficult to isolate accurately
as it can be merged with other frequency components irrelevant
to the fault or it can be hidden in other components such as
the supply frequency and its harmonics due to the variable op-
erating conditions. This makes the use of the IDFT difficult to
implement when monitoring actual WTs. One of the purposes
of this paper is to demonstrate an approach, which is better able
to isolate an FSC under variable loading conditions. Section III
will illustrate the theory behind this approach.

III. EKF FOR FREQUENCY TRACKING

The EKF is an efficient recursive algorithm widely applied in
the fields of radar tracking [34] and adaptive control [35]. The
conventional Kalman filter assumes a linear system dynamics
model with Gaussian noise in the measurements, which is not
always realistic in many applications. The EKF on the other
hand is an extension of the conventional Kalman filter to non-
linear system dynamics and has been used for state estimations
of induction motors and WT DFIGs [36], [37]. In this section,
the observed FSC at time k is first modeled. The mathematical
formulation of the EKF used to iteratively estimate the FSCs
is then briefly presented. Theoretically, the stator current wave-
form in one phase (e.g., phase A) of DFIG can be expressed as
follows:

zk (t) =
∑

i

Ai cos(2πfitk + θi) (2)

where Ai and fi are the amplitude with initial phase θi and the
frequency of the ith sinusoid, respectively. We used a Fourier
transform to convert the time description of the stator current
waveform into an equivalent function in the frequency domain
thus

zk (f) =
∑

i

Ai [δ(fk + fi) + δ(fk − fi)]. (3)

The one-sided Fourier transform of (3) at (fs) the main supply
frequency can be written as follows:

zk (f) = Aδ(fk − fs). (4)

By substituting (1) into (4), we obtain the representation of
the FSCs in the frequency domain

zk (f) = Aδ

(
fk −

(
p

pI ± k(1 − s)

)
ff

)

= Aδ(fk − αff ) (5)

where

α =
(

p

pI ± k(1 − s)

)
. (6)

The dynamics of the state variables can be represented by the
state variable equation as follows:

xk = f(xk−1,uk ) + wk (7)

where f is a nonlinear function of states, uk is the control
vector, and wk is a white noise driving function to account for
the dynamic variation of the state variables. The observed FSC

yk at time k with the additive noise vk can be described as
follows:

yk = zk + vk (8)

and can be represented by the following linear stochastic system:

yk =
[
1 1

][ A
αff

]
+ vk . (9)

The above-mentioned linear representation is also equivalent
to the following nonlinear stochastic system:

State equation xk+1 = f(xk ) + wk (10)

Measurement equation yk = Hxk + vk (11)

where

xk =
[
xk (1) xk (2)

]T =
[
A αff

]T
(12)

f(xk ) =
[
xk (1) xk (1)xk (2)

]T =
[
A Aαff

]T
(13)

H =
[
1 1

]
. (14)

This formulation leads to the EKF algorithm in order to lin-
earize the above-mentioned system, which is slightly different
from a standard linear Kalman filter model. The recursive track-
ing process of a series of fault frequencies at any time step from
k equal to zero is outlined as follows.

Step 1: Predict the estimates of the state variables x̂k+1|k and
the error covariance Mk+1|k

x̂k+1|k = f x̂k |k (15)

Mk+1|k = FPk |kFT + Qk . (16)

Step 2: Update the Kalman gain Kk

rk = |zk − ẑk | (17)

Sk = HkPk |k−1HT
k + rk (18)

Kk = Pk |k−1HT
k S−1

k (19)

where

Fk =
∂f(xk )
∂xk

∣∣∣
xk = x̂k |k

=
[

1 0
x̂k |k (2) x̂k |k (1)

]

=

[
1 0

(1 − ε) ˆ(αff )k |k Âk |k

]
. (20)

Step 3: Update the state variables x̂k |k

x̂k |k = x̄k |k−1 + Kk [yk − Hk (x̄k |k−1)]. (21)

Step 4: Update the error covariance

Pk |k = (I − KkH)Pk |k−1 + qB

B =
[

0 0
0 1

]
(22)

where the symbols¯andˆstand for the predicted and updated
values, respectively. I is the identity matrix. The vector zk is the
observed FSCs, which is obtained by applying the fast Fourier
transform (FFT) algorithm for each interval of interest from the
current signal in the time domain, and ẑk is the expected normal
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state, which represents the calculated FSCs in (1). rk denotes
the measurement innovation.

The design of a stable EKF was largely addressed in [38] and
[39], which reports theoretically supported design guidelines to
characterize the EKF design by a vector of three parameters
(r, ε, q). An easier and more transparent tuning of EKFs is in-
troduced in [40] where the results showed that ε must be set
to zero to achieve the basic property of unbiasedness, and that
the performance of the EKF tracker then only depends on the
ratio λ = r/q; Bittanti and Savaresi [40] proceed to suggest that
q = 1 (and hence λ = r) for a further significant simplification
of the tuning procedure. Hence, the task of tuning the design
parameters of the EKF tracker (parameterized with r, ε, q) is
reduced to the fact that only a single parameter (λ = r) has to
be chosen [40]. This EKF tuning approach was followed in this
paper, where r is set to be the difference between the observed
FSCs and the calculated FSCs in order to limit the variation
of the innovation vector, cope with spurious measured values,
enhance the estimated accuracy, and help the EKF to provide
proper weighting.

In the implementation of the EKF, we assume that at time k
an initial estimate of the state variable is known and is denoted
by xk−1|k−1 and that its associated covariance matrix is also
known and denoted by Mk−1|k−1 . The estimated variables are
not affected by this assumption because the EKF is not sensitive
to moderate changes in the initial covariance [41].

The principal stages of the tracking method based on the EKF
to iteratively estimate the FSCs in the stator current signal are
as follows.

1) Input the initial measured generator rotational speed and
the stator current data points, the initial value of the state
variables x0 and its associated covariance matrix M0 ,
and covariance of the measured error r0 at a sampling
interval Δtk .

2) Calculate the mean speed for the sample and the slip.
3) Calculate the stator current spectrum using an FFT.
4) Calculate discrete constants from frequencies of inter-

est, k.
5) Calculate amplitudes for each constant, k.
6) Extract maximum amplitude and its frequency zk .
7) Calculate the FSCs of interest using (1) ẑk .
8) Predict the estimates of the state variables and the error

covariance using (15) and (16).
9) Calculate covariance of the measured error rk using

(17).
10) Compute the Kalman filter gain Kk using (19).
11) Update the estimates of the state variables and the error

covariance with the measurement zk using (21) and
(22).

12) Project ahead using (15) and (16).
13) Repeat the process starting with next sampling interval

Δtk+1 .

IV. CASE STUDY

The proposed approach has been applied to the generator
current signals collected from a purpose built WT drive train

Fig. 1. Schematic representation of the test rig.

Fig. 2. Current–time waveform.

test rig. As shown in Fig. 1, the test rig comprises a 54-kW
dc variable-speed drive connected via a two-stage gearbox to
a four-pole DFIG that was rated for the experiment at 30 kW.
The rotational speed of the dc motor is controlled by an external
model incorporating the properties of a 2-MW WT operating un-
der closed-loop conditions, driven by realistic wind conditions
at a variety of wind speeds and turbulence intensities. The rotor
circuit of the generator is coupled via slip rings to an external
three-phase resistive load bank so that electrical imbalance can
be applied to the generator rotor. The test rig was instrumented
and controlled using LabVIEW, see [42] for more details. In
the experiments, a rotor unbalance fault was implemented on
the test rig by adding two additional external resistances to one
phase of the rotor circuit through an external load bank. In the
healthy state, the rotor resistance was 1.3 Ω per phase and ad-
ditional resistances of 0.3 and 0.6 Ω were successively added
to one phase to create two fault levels. These correspond to two
levels of rotor unbalance of 23% and 46%, respectively, given
as a percentage of the rotor balanced phase resistance. The test
rig enables the generator to be driven at a desired preprogramed
wind speed profile that emulates realistic WT transient behavior
and is achieved by providing a predefined speed reference pro-
file to the controller. The relevant signals for CM were collected
from the terminals of the generator at a sampling frequency of
5 kHz. An example of the measured current signal under faulty
conditions is shown in Fig. 2.

It can be seen that the amplitude of the current–time wave-
form gave no indication of abnormal conditions. Consequently,
an FFT algorithm is used to convert the generator current signal
from the time domain into the frequency domain in a healthy
condition (no unbalance) and with a rotor unbalance, as shown
in Fig. 3. As is generally expected for any grid connected ma-
chine the supply frequency (50 Hz) and its harmonics are clearly
seen in the spectra. There are also spectral components present
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Fig. 3. Comparison of the current spectra for healthy case and rotor
unbalance case.

around the even and odd harmonics even when operating in a
healthy state. This is believed to be caused by pre-existing low-
level rotor excitation imbalance commonly induced by inherent
manufacturing imperfections [9], [21]. However, the compari-
son of healthy and faulty data indicates a significant rise in the
magnitude of a number of twice slip frequency 2sf sideband
components on the current harmonics, which can be clearly ob-
served when the 23% unbalance is applied to the generator rotor.
In Fig. 3, the FFT algorithm cannot reveal the time information
of any frequency changes, i.e., no time-domain information is
available regarding fault occurrence and progression. Thus, an
EKF has been proposed to detect faults by monitoring the mag-
nitudes of the FSCs over time, taking into account variable
operating conditions. The rotor unbalance fault gave rise to a
number of side-band components in the current spectra. Mon-
itoring all components would be impractical in an operating
environment, so we have selected a series of FSCs that exhibit
the highest magnitude. The FSCs of interest to be tracked using
the EKF algorithm are labeled as f1 , f2 , f3 , f5 in Fig. 3.

V. PERFORMANCE COMPARISON

In order to show the effectiveness of the proposed approach
based on an EKF, we have selected the CWT and IDFT, used
in [9] and [30] for WT generator CM, for comparison. The al-
gorithms are tested under varying rotational speed conditions
representative of the operating regimes seen by a hypothetical
WT out in the field. At each test, the test rig was run for a period
of 150 s after which the 23% and 46% unbalance fault conditions
were applied at 150 s and 300 s, respectively. The driving con-
ditions selected for testing are shown in Fig. 4, corresponding
to the following WT operating conditions.

Test case 1. Supersynchronous speed with high turbulence
intensity: In this test, a high mean wind speed (15 m/s) with
high turbulence intensity (20%) was applied to the test rig via
a dc motor, the speed of which was controlled by an external
model incorporating the properties of a 2-MW exemplar tur-
bine model developed by the University of Strathclyde as part
of the Supergen Wind Energy Technologies Consortium [9].
The CWT, IDFT, and EKF methods have been applied to the
current spectra in Fig. 3 to extract the IAs of the four defined

Fig. 4. Generator speed test conditions.

frequencies of interest (f1 , f2 , f3 , f5) for the detection of rotor
unbalance. The results under supersynchronous speed with high
turbulence intensity are shown in Fig. 5. Note, if the tracked
FSC of each method shows a step change in magnitude when
the fault condition was present or has changed, then the method
has successfully captured the component frequency related to
the fault.

In Fig. 5(a), the conventional CWT is able to capture fault
components f1 and f2 where their IAs did show a marked change
when the fault condition was applied or has changed. The CWT
failed to capture other components due to the influence of the
window function on the results, where the window size is well
matched with the oscillation of component f1 and f2 but as the
fault frequency increases the window is no longer able to capture
the variation of the fault components. A more robust window
design is necessary in order to improve simultaneously high time
resolution and high frequency resolution. But, this is not an easy
task as the difference between the f1 , f2 , and f3 components
is about 50 Hz and increases to 100 Hz for component f5 .
In addition, these components overlap with the main supply
frequencies and other dominant frequency components of the
current signal that are irrelevant to the fault. To overcome these
shortcomings, the IDFT algorithm was applied to extract the
magnitude of the FSCs. The results are shown in Fig. 5(b).

In Fig. 5(b), it is seen that the IDFT method has successfully
tracked the magnitude of the four fault-related frequencies with
increasing fault severity (i.e., from 300 to 450 s) despite the
fact that the shaft speed was varying continuously throughout
the experiments. Similar to the IDFT results, the EKF algorithm
has successfully picked up the four FSCs that are changing
proportionally to the rotational speed, as shown in Fig. 5(c). The
results show that the EKF is able to track the fault frequencies,
giving quantitative information about the fault progression.

However, the tracking results of each algorithm in Fig. 5
follow different variation tendencies due to the fact that the
current signals from an operational WT are not stationary but
are time varying in nature because of the constantly varying
generator speed, making the detection of FSCs by the tracking
algorithms more challenging. In order to demonstrate the best
achieved performance for detecting the rotor unbalance fault
and revealing the actual fault degree, the performance of all
diagnostic methods during the fault event is evaluated using
root-mean-squared error (RMSE) values. Since the increase in
the degree of rotor unbalance can be calculated from the IA
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Fig. 5. Tracking the magnitude of fault frequencies of interest using (a) CWT, (b) IDFT, and (c) EKF for test case 1.

TABLE I
RMSE OF THE TRACKING METHODS FOR TEST CASE 1

FSCs RMSE values (%)

CWT IDFT EKF

f1 1.967 2.135 0.325
f2 1.134 1.301 0.258
f3 N/A 2.115 0.441
f5 N/A 0.420 0.236

variations of the FSCs extracted by the diagnostic methods, a
general expression is derived for machine operation with rotor
unbalance degree η̂k by calculating the difference between the
IA for each component under healthy and faulty conditions
divided by the order of the component order times the average
under healthy conditions as follows:

η̂k =
IAf − IAh

k.IAh
× 100% (23)

where IAh and IAf are the IA at any time step k for each
component under healthy and faulty conditions, respectively,
and k is the component order (k = 1, 2, 3, ...). The RMSE is
given by

RMSE =
1
N

N∑
i=1

(ηi − η̂i) (24)

where ηi is the degree of the fault during the experiment, corre-
sponding to the two levels of rotor unbalance of 23% and 46%.
Table I summarizes the results of the performance evaluation. It
is clear from the table that the IDFT and EKF methods perform
best in terms of the RMSE for all FSCs. The CWT is incapable
of detecting the fault by tracking the components f3 and f5 , but
the RMSE values for components f1 and f2 are lower than the

TABLE II
RMSE OF THE TRACKING METHODS FOR TEST CASE 2

FSCs RMSE Values (%)

CWT IDFT EKF

f1 2.757 2.413 0.318
f2 2.213 0.608 0.276
f3 N/A 2.067 0.382
f5 N/A 0.388 0.234

same components for the IDFT. The comparison between the
three methods shows that the RMSE for all FSCs is much lower
when using the EKF method.

Test case 2. Supersynchronous speed with low turbulence in-
tensity: This test represents 7.5 m/s mean wind speed with low
turbulence intensity 6%. The slip for this state differs signifi-
cantly from case 1 with a wide range as seen in Fig. 4. Similar
results to the previous test case are observed in Fig. 6, where
the CWT is only able to track the fault component f1 and f2 .
This explains why in [30] and [43] only the fault component f1 ,
which is the twice slip frequency was tracked using the CWT.
In contrast, both the IDFT and EKF methods can successfully
show the presence of the fault. It is also clear that the varia-
tion tendencies of the IAs at the four characteristic frequencies
have been correctly extracted despite the time-varying features
due to the variable-speed operation and the disturbance of the
components unrelated to the fault.

The performances of the three methods are summarized in
Table II. Again, the performance of the IDFT and EKF is better
in terms of the RMSE values for all FSCs. Compared to the CWT
and IDFT, the EKF proved capable of dealing with different
variable-speed driving conditions with lower RMSE values. In
addition, the components f1 and f2 for the CWT show higher
RMSE values compared to the results in case 1 as larger variation
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Fig. 6. Tracking the magnitude of fault frequencies of interest using (a) CWT, (b) IDFT, and (c) EKF for test case 2.

Fig. 7. Tracking the magnitude of fault frequencies of interest using (a) CWT, (b) IDFT, and (c) EKF for test case 3.

in rotational speed for test case 2 makes it more challenging to
track the FSCs. It can be concluded that the EKF not only showed
the best performance overall in terms of RMSE metric, but also
in terms of the rotor unbalance fault detection at different driving
conditions, whereas the CWT method performed worst. One
explanation for the poor performance of the CWT method can
be the windowing technique, which has been influenced by the
speed variations.

Test case 3. Near-synchronous speed: Following the success-
ful detection of the fault conditions at supersynchronous speed,
it is important now to verify the CM capability of the algorithms
when the machine operates near to the synchronous speed. In
this case, the slip will be near to zero so the FSCs in (1) will
be very close to the supply frequency (50 Hz) and its harmon-

ics (both odd and even), making CM and fault detection more
challenging even though this condition occurs frequently for an
operational WT. The results of such a scenario are shown in
Fig. 7.

Both the CWT and IDFT algorithms, shown in Fig. 7(a) and
(b), have failed to effectively track the FSCs; the shortcoming
of the CWT and IDFT methods is that both use windowing
technique, and do not have an observer to avoid tracking the
FSCs when they are so close as to be effectively merged with
the supply frequency and its harmonics.

On the other hand, the EKF shows much better resolution of
the varying fault conditions, as shown in Fig. 7(c). The results
clearly show that the amplitude of the fault-related frequencies
jumps sharply when the 23% unbalance fault is introduced at
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Fig. 8. Tracking the fault frequencies of interest using EKF for (a) test case 1, (b) test case 2, and (c) test case 3.

150 s. A similar jump occurs for the 46% unbalance condition in-
troduced at 300 s that shows clear differences between healthy
and faulty conditions particularly for components f2 , f3 , and
f5 . The performances of the FSCs tracked by the EKF in terms
of the percentage RMSE values are found to be 0.378, 0.244,
0.386, and 0.352 for f1 , f2 , f3 , and f5 , respectively. It can be
seen that the EKF shows more accurate fault tracking across
all the driving conditions and the RMSE values for all FSCs
are very close. Over the three cases, the EKF shows better fault
resolution compared to the CWT and IDFT as it does not use
any windowing technique, rather it uses the Kalman gain(Kk ).
The Kalman gain acts as a relative weight given to the current
extracted and measurement values, and its value is continuously
tuned to get the correct estimation value of the FSCs and their
magnitude from the nonstationary current signal. At each time
step, Kk is calculated from the covariance. The constantly vary-
ing generator speeds and nonlinear operation lead to an increase
or decrease of the Kalman gain, so with a high gain the filter
places more weight on the most recent measurements, and thus
follows them more responsively to avoid tracking the noise (i.e.,
the supply frequency and its harmonics or other dominant fre-
quency components of the current signal), which are irrelevant
to the fault. With a low gain, the filter follows the model predic-
tions more closely to track the fault signatures and smooth out
the noise.

To show the effectiveness of the proposed EKF, we compare
in Fig. 8 the tracking results of the EKF associated with the
spectral component frequencies against the actual frequencies,
described by equation (1), across all driving conditions. As it can
be seen from Fig. 8, that the tracking frequencies are different
from the actual frequencies in normal operation when there
is no fault because the magnitude of the actual frequencies is
very small and merged with the noise so they are difficult to
detect or differentiate. Once, the fault has been applied, the
EKF immediately captured the frequencies related to the fault
and continued to track them over time despite the fact that the

actual frequencies are more affected by the speed variations and
follow exactly the same speed variation tendencies, as shown in
Fig. 4. It can also be seen for case 3 that the f1 and f5 FSCs are
particularly difficult to capture compared to the others cases due
to the operation at low load near to synchronous speed, resulting
in FSCs manifesting themselves in the vicinity of the supply
frequency and its harmonics with extraneous noise, as shown in
Fig. 3. This led to an increase in the variation of the innovation
vector rk for these conditions. However, the magnitude of the
tracked f1 and f5 FSCs is still useful for fault detection, and did
show a step change in magnitude when the fault condition was
present or was changed as discussed previously.

In summary, the results for the three cases show that the
rotor electrical unbalance fault can be accurately detected by
tracking any component using the EKF, but overall the second
component f2 showed the lowest RMSE in revealing the fault
degree. The results using the IDFT in Tables I and II show
that the fifth component f5 provides the lowest RMSE (0.404
as an average percentage), whereas the results obtained from
other components are not effective in revealing the degree of
rotor unbalance. If we only consider component f5 for fault
diagnosis, our proposed approach demonstrates a significant
improvement over the IDFT method in imbalance diagnosis
accuracy by reducing the percentage RMSE from 0.404 to 0.235.
Since the results show that the second component f2 has the best
accuracy in the case of the EKF, whereas the fifth component f5
provides the best accuracy in the case of the IDFT, this indicates
we have successfully reduced the volume of data required for
analysis and storage. To clarify, based on the Nyqist–Shannon
sampling theorem, the data requirements to monitor component
f5 for a period of one year would enable the monitoring of
component f2 for a period of approximately two years and
four months, due to the fundamental fact that f5 is greater than
f2 and requires a higher sampling rate to capture. Hence, our
approach shows success in tracking the magnitude of the FSCs
and revealing the severity of the faults over time with significant
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TABLE III
COMPUTATIONAL COMPLEXITY OF THE TRACKING METHODS

FSCs CT (s)

CWT IDFT EKF

f1 35.65 0.98 1.2
f2 20.05 1.01 1.1
f3 14.79 1.05 1.16
f5 4.32 1.09 1.1

gains in both the computational efficiency and the diagnosis
accuracy.

A. Computational Time

To further highlight the improvement offered by an EKF, we
perform CT analysis comparing the EKF method against the
CWT and IDFT methods. The calculations were performed on
a computer with an Intel i7 core processor and 32.0-GB RAM.

Table III shows the plot of the averaged CT for the results
obtained in Figs. 5–7 for the series of FSCs. It is seen that the
CWT method requires a higher CT for the FSCs with lower fre-
quencies because these tend to have much longer wavelengths
with a high signal-to-noise ratio, whereas the higher FSCs have
much shorter wavelengths with low signal-to-noise ratio. Ac-
cordingly, this affects the width of the window function in time
to capture the frequencies of interest; therefore, it requires more
computational resources. In contrast, the IDFT and EKF require
far less computational resource compared to the CWT. This is
due to the fact that the IDFT and EKF methods apply a discrete
Fourier analysis over a narrow band around the frequency of
interest. The IDFT and EKF have very similar CT requirements
making them more suitable for online monitoring than the CWT.

VI. CONCLUSION

This paper proposed the use of an EKF in the detection of
rotor electrical unbalance fault, indicative of common winding,
brush gear, or high resistance connection faults, in a WT DFIG.
The EKF performance was compared with that of a CWT and
an IDFT in terms of its ability to track a series of fault frequen-
cies associated with three different unbalance condition levels
and for three different simulated transient operating regimes us-
ing data generated by a test rig. The EKF demonstrated better
overall resolution of fault frequencies particularly where those
frequencies are close to the synchronous frequencies and their
harmonics; a condition that can occur frequently when a turbine
is operating with the generator close to synchronous speed. Due
to the parsimonious nature of the EKF and the fact that it does not
employ windowing, it is able to accurately detect fault frequen-
cies with minimal computational requirements when compared
with a CWT. The EKF was shown to be capable of detecting the
degree of rotor unbalance with greater accuracy than an IDFT or
CWT. The results presented show that the EKF algorithm shows
promise as a low cost, efficient method for condition monitor-
ing the output of a WT generator particular with regard to the
detection of electrical faults such as rotor unbalance.

Future work is required to apply this approach to real operat-
ing WTs, which may be suffering from rotor electrical asymme-
tries, and to use the detection of the fault degree to potentially
predict the fault progression some time in advance. Work is also
necessary to assess the potential of the reported technique to
be used for the detection of a wider range of WT faults such
as generator bearing, gearbox-bearing, and rotor eccentricity
faults.
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Siniša Djurović (M’09) received the Dipl.Ing.
degree in electrical engineering from the Uni-
versity of Montenegro, Podgorica, Montenegro,
in 2002, and the Ph.D. degree in electrical en-
gineering from the University of Manchester,
Manchester, U.K., in 2007.

He is a Senior Lecturer with the Power Con-
version Group, Manchester, U.K. His research
interests include electric machines and drive
operation, design, monitoring and diagnostics,
and their use in renewables and automotive
applications.

Christopher J. Crabtree received the M.Eng.
degree in engineering from Durham University,
Durham, U.K., in 2007, and the Ph.D. degree in
electrical engineering from Durham University,
in 2011, with a thesis on condition monitoring
techniques for wind turbines.

He is an Assistant Professor in Wind Energy
Systems with Durham University. His research
interests include reliability, condition monitoring,
and operations and maintenance of offshore
wind farms.

Mr. Crabtree is leading Durham’s contribution to the EPSRC HOME
Offshore project on wind farm reliability and operations. Much of his re-
search has been undertaken as part of the U.K. EPSRC SUPERGEN
Wind Energy Technologies Consortium.



Measurement Science and Technology

PAPER • OPEN ACCESS

Non-intrusive torque measurement for rotating
shafts using optical sensing of zebra-tapes
To cite this article: D Zappalá et al 2018 Meas. Sci. Technol. 29 065207

 

View the article online for updates and enhancements.

Related content
Monte-Carlo-based uncertainty
propagation with hierarchical models—a
case study in dynamic torque
Leonard Klaus and Sascha Eichstädt

-

An optical torque transducer for high-
speed cutting
Antonio Pantaleo, Achille Pellerano and
Stefano Pellerano

-

A transducer to measure the torque
imposed on the engine of a passenger car
by accessory and ancillary devices
K J Rogers

-

This content was downloaded from IP address 129.234.103.141 on 30/07/2019 at 14:46

http://iopscience.iop.org/article/10.1088/0957-0233/17/2/014
http://iopscience.iop.org/article/10.1088/1681-7575/aaa21b
http://iopscience.iop.org/article/10.1088/0957-0233/17/2/014
http://iopscience.iop.org/article/10.1088/1681-7575/aaa21b
http://iopscience.iop.org/article/10.1088/0022-3735/16/11/024
http://iopscience.iop.org/article/10.1088/0022-3735/16/11/024
https://doi.org/10.1088/1361-6501/aab74a
http://iopscience.iop.org/article/10.1088/1681-7575/aaa21b
http://iopscience.iop.org/article/10.1088/0022-3735/16/11/024


1 © 2018 IOP Publishing Ltd  Printed in the UK

1.  Introduction

Torque is a fundamental operating parameter of rotating 
mechanical systems. Some of the most common industrial 
applications of torque measurement include both conventional 
[1, 2] and emerging [3, 4] power generation, electric motor 

testing [5], robot arms [6], marine [7] and automotive [8] 
industry. Power and efficiency optimisation based on highly 
accurate and reliable torque measurement, besides enabling 
significant energy savings, fits to the steadily increasing 
requirements of the international regulation, especially for 
large mechanical drives with high nominal torque [9], such as 
marine engines [10]. Despite torque measurement and control 
being critical to dynamic performance monitoring, condition 
monitoring for predictive maintenance and control of mechan-
ical systems, reliable measurements can be difficult to obtain 
in a cost-effective and non-intrusive manner.
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Non-intrusive, reliable and precise torque measurement is critical to dynamic performance 
monitoring, control and condition monitoring of rotating mechanical systems. This paper 
presents a novel, contactless torque measurement system consisting of two shaft-mounted 
zebra tapes and two optical sensors mounted on stationary rigid supports. Unlike conventional 
torque measurement methods, the proposed system does not require costly embedded 
sensors or shaft-mounted electronics. Moreover, its non-intrusive nature, adaptable design, 
simple installation and low cost make it suitable for a large variety of advanced engineering 
applications. Torque measurement is achieved by estimating the shaft twist angle through 
analysis of zebra tape pulse train time shifts. This paper presents and compares two signal 
processing methods for torque measurement: rising edge detection and cross-correlation. The 
performance of the proposed system has been proven experimentally under both static and 
variable conditions and both processing approaches show good agreement with reference 
measurements from an in-line, invasive torque transducer. Measurement uncertainty has 
been estimated according to the ISO GUM (Guide to the expression of uncertainty in 
measurement). Type A analysis of experimental data has provided an expanded uncertainty 
relative to the system full-scale torque of  ±0.30% and  ±0.86% for the rising edge and cross-
correlation approaches, respectively. Statistical simulations performed by the Monte Carlo 
method have provided, in the worst case, an expanded uncertainty of  ±1.19%.
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The methods used to measure torque can be divided into 
two categories, either direct or indirect.

Direct methods use in-line torque transducers, already 
calibrated by the manufacturer, which are integrated into the 
drive shaft. These sensors have some susceptibility to noise 
and require bearings for support, which also implies main-
tenance. The major obstacle to the industrial application of 
direct measurement systems is the costly and intrusive nature 
of the required equipment, which is impractical for short-term 
use, particularly on large systems. The act of mounting the in-
line transducer may also change system dynamics and, conse-
quently, torque values. Moreover, direct measurements cannot 
be implemented when the rotating mechanical system design 
does not allow adapting the shaft design or lengthening the 
drivetrain to accommodate the in-line transducer.

Indirect methods are based on the measurement of torque-
related parameters and subsequent torque calculation. These 
methods have the advantage of avoiding modifications to the 
original shaft, therefore minimising the impact on mechanical 
design and not modifying the static and dynamic behaviour 
of the shaft. The conventional indirect systems are based on 
measurement of surface strain or angle of twist [11]. Surface 
strain measurement systems typically use either strain gauges, 
directly bonded on the shaft body in a Wheatstone bridge 
configuration, or magnetostrictive methods. These methods 
rely on the change of resistance [12] or magnetization proper-
ties of the material [13], respectively, when torque is applied. 
Strain gauges are the most commonly used in industrial appli-
cations thanks to their low cost and high sensitivity. However, 
the main limitations of this method are the complexity of 
installation of the sensors on cylindrical surfaces, the need 
to install electronics on the rotating shaft, the requirement 
for specialised personnel required for installation, usability, 
resolution, noise susceptibility and the requirement for reg-
ular calibration. Moreover, unwanted forces can create unin-
tended directional disturbance, such as crosstalk phenomena, 
that can increase the uncertainty in the measured loads and 
reduce accuracy [13]. Angle of twist measurement methods 
are based on the measurement of the phase between two 
points on the shaft, separated by a suitable distance, through 
magnetic or optical angular position sensing [7]. The first use 
toothed gears which are angularly displaced with respect to 
each other as the shaft shift twist angle increases, thereby 
increasing the electrical phase difference between the signals 
measured by magnetic pickups [13]. Conventional optical 
methods use slotted discs which move with respect to each 
other as torque is applied, thereby changing the on-times 
of light pulses created by the shutter actions of the rotating 
discs [14, 15]. Both systems can be retrofitted to existing sys-
tems and do not have the inherent complexity of strain gauge 
installations. However, they require the installation of quite 
large rings and plates around the shaft which can be imprac-
tical in some industrial applications, such as in-vehicle and 
mobile measurements, due to space constraints. They also 
suffer from environmental factors such as dust, humidity, 
temperature, vibration, electromagnetic interference and 
aging. In addition to performance limitations, these methods 
usually suffer from low range-to-resolution ratio [11]. A laser 

torque meter was first presented in [16] and later analysed 
in [17–19]. This instrument is based on the cross-correlation  
of the periodic speckle patterns generated by two axially 
separated laser beams on a rotating shaft, having known 
mechanical proprieties. Even if this is a smart non-contact 
approach, it suffers from decorrelation of speckle patterns 
due to shaft displacement and tilt, making its practical appli-
cation difficult. Several advanced contactless torque measure-
ments techniques have been researched recently, such as the 
photo-elastic torque sensor based on the birefringence effect 
of optically anisotropic materials [20] and the non-contact 
Hall effect design sensor [21]. However, most of these sen-
sors have significant limitations such as requiring torque sen-
sitive materials to be attached on the shaft surface, such as 
ferromagnetic and piezoelectric materials, and limited speed 
range and resolution. Moreover, very few solutions can pro-
vide both shaft torque and speed measurement from the same 
sensor, which is useful whenever one desires to measure 
mechanical power.

This paper presents a novel and simple contactless torque 
and speed measurement system consisting of two zebra tape 
codes directly glued around the shaft with two optical sen-
sors mounted on non-rotating supports. This technique oper-
ates entirely contact-free and allows torque measurement on 
standard installations, across their operational life, avoiding 
the use of permanently installed in-line intrusive torque 
meters, by simply instrumenting the existing shaft with the 
two zebra tapes located as far as possible from each other. 
The use of optical sensors and zebra tapes on rotating shafts 
is not new; however, literature reports only application for 
torsional vibration measurement [22, 23], while this research 
proposes their use for torque measurement. This paper intro-
duces the operating principle of the proposed non-intrusive 
torque measurement system and its experimental implementa-
tion and validation. Two different approaches for processing 
the optical probe (OP) pulse train signals and estimating the 
shaft twist, and hence the applied torque, are then presented. 
After calibrating the system under stationary conditions, its 
response and performance under both static and time-varying 
torque conditions is demonstrated by comparing the results 
of the two proposed signal processing approaches against the 
reference measurements from an in-line torque transducer 
mounted on the test bench shaft.

2.  Methodological approach

A torque acting on a shaft causes the shaft itself to twist, with 
one end rotating with respect to the other by an angle dis-
placement θ. Assuming a uniform circular cross-section and 
linear homogenous elastic material, the relationship between 
the torque applied to a rotating shaft, T (N m), and the relative 
rotation of the ends of the shaft section, θ (rad), is described 
[24] by:

T = Iθ̈ + Cθ̇ + Kθ� (1)

where I is the rotating system moment of inertia (kg m2), C is 
the shaft damping coefficient (kg m2 s−1 rad−1) and K is the 
shaft torsional stiffness (N m rad−1).
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The non-intrusive torque measurement system proposed in 
this paper employs a set of two zebra tapes and two OPs, one 
at each end of the shaft, as shown in figure 1.

The zebra tapes feature an equal number of equidistant 
black and white stripes and are glued around the shaft. As the 
shaft rotates, each optical sensor, mounted on a non-rotating 
component, generates a pulse train signal proportional to 
the light intensity reflected by the zebra tape stripes. When 
a torque, T, is applied to the shaft, the relative rotation of 
the ends of the shaft section, θ, results in a time shift, Δt, 
between the two pulse train signals. The principle of the pro-
posed method is to quantify the shaft relative twist angle by 
measuring the phase difference between the two pulse signals 
and thence deriving the applied torque, from a known torque-
twist relationship. This is achieved according to the following 
procedure:

	(1)	Estimation of the time shift, Δt (s), between the pulse 
trains measured by the two OPs; 

	(2)	Measurement of the pulse trains period, τ (s), and calcul
ation of the shaft rotational speed, n (rpm):

n =
60

τ ppr� (2)

where ppr is the number of pulses per shaft revolution; 
	(3)	Conversion of time shift to absolute angular shift, θa, 

according to [25]:

θa =
2π
60

n∆t.� (3)

The shaft absolute twist angle, θa, could be different to the 
shaft relative twist angle, θ, due to the mounting misalign-
ment between the two OPs and/or the two zebra tapes. This 
error manifests itself as an apparent angular shift, θa,0, at the 
no load condition; 

	(4)	 Calculation of the shaft relative twist angle, θ, according 
to the following equation:

θ = θa − θa,0.� (4)

	(5)	 Estimation of the shaft torque based on the known cali-
bration curve, that is the relationship between the shaft 
relative twist angle θ and torque T for a given shaft and 
material.

One of the main advantages of this approach is that it 
allows the measurement of a wide torque range by care-
fully designing the zebra tapes and their distance along the 
shaft. This makes it suitable for a large variety of engineering 
applications.

3.  Experimental set-up

Experiments were performed to calibrate and validate the pro-
posed non-intrusive torque measurement system. The calibra-
tion was performed by comparing the zebra tape torque meter 
with a reference state-of-the-art measurement technique; in 
particular, an industrial in-line torque meter, based on the prin-
ciple of a variable, torque-proportional transformer coupling, 
was used. This technology is robust against electromagnetic 
interference and temperature effects; therefore, the system can 
be effectively used as a reference for calibration. Figure 2 pro-
vides a schematic of the torque test rig developed at Durham 
University, in collaboration with Università Politecnica delle 
Marche. Figure 3 shows the implemented test stand with its 
main components and instrumentation.

The test rig comprises a 4-pole 4 kW grid-connected induc-
tion generator driven by a 4-pole 4 kW induction motor con-
trolling the speed profile. Both machines are manufactured by 
ABB Motors. The motor shaft speed is varied via an inverter 
drive up to 2100 rpm. The generator is connected to a vari-
able transformer to vary its stator voltage and hence the shaft 
torque in the range from 0 to 16 N m.

The main rig solid shaft, shown schematically in figure 4, 
features a reduced diameter cross-section in its central part 
for experimental purposes in order to enhance sensitivity 

Figure 1.  Operating principle of the non-intrusive torque measurement system.
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with respect to the test rig torque range and hence achieve 
a higher twist angle θ for the same applied torque. Indeed, 
this allows angular shifts of the same order of magnitude 
as would be observed in the case of larger torques applied 
to larger diameter shafts in industrial applications, despite 
the limitations of the maximum torque possible using this  
test rig.

A high-quality, laser-printed zebra tape is glued around 
each end of the shaft. The passage of the alternating light and 
dark stripes is measured by two Optek OPB739RWZ reflec-
tive line reader sensors placed at the optimum distance of 
0.76 mm from the target, as shown in figure 5.

First, the output from the two OPs is transformed into a 
series of square pulses through a Schmitt trigger. The pulses 
are then acquired by a National Instruments (NI) 16-bit data 
acquisition system (USB-6211 DAQ) driven by the LabVIEW 
data acquisition environment. The sampling frequency, fOP, is 
set at 125 kHz, the maximum possible for the NI USB-6211 
DAQ hardware.

An in-line Magtrol TMB 313/431 torque transducer, with 
a rated torque of 500 N m and a combined error of linearity 
and hysteresis less than  ±0.15% of the rated torque, acts as 
a reference for calibration and comparison with the optical 
non-intrusive system output. The transducer is capable of 

Figure 2.  Schematic diagram of the torque test rig.

Figure 3.  Main components and instrumentation of the torque test rig.

Figure 4.  Solid shaft layout and location of the two zebra tapes.
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outputting 60 pulses per revolution for speed measurement 
so is also used as a reference tachometer. The torque trans-
ducer output is collected through a Magtrol 6400 torque dis-
play which is connected by a GPIB/IEEE-488 interface to the 
LabVIEW data acquisition environment. The time synchroni-
sation between the torque transducer and the OPs’ readings is 
obtained by comparing the Unix timestamp of the two system 
acquisitions.

3.1.  Zebra tape design

The design of the zebra tape, particularly the number of pulses 
per revolution, has a significant impact on the precision of the 
torque measurements [26]. For a given shaft and zebra tape 
design, the maximum measurable phase difference between 
two pulse signals is given by half the zebra tape period, that 
is half the length of each of its black–white segments, corre
sponding to 180° phase shift. Indeed, any twist larger than half 
the period of the zebra tape would be confused with a lower 
one, as always happens in periodic signals.

When designing the zebra tapes, the minimum zebra tape 
period, Pmin (m), can be calculated as a function of the max-
imum torsion angle of the shaft expected during operation, 
θmax:

Pmin > 2θmaxr� (5)

where θmax, (rad) is given by:

θmax =
TmaxL

JG
� (6)

where Tmax is the maximum torque expected during operation 
(N m), L is the distance between the two OPs (m), J is the 
shaft polar moment of inertia (m4) and G is the shear modulus 
of elasticity for the shaft material (Pa). The corresponding 
zebra tape maximum allowable number of pulses per revo
lution, pprmax, can then be calculated as:

pprmax = int
(

2πr
Pmin

)
<

2πr
2θmax r

� (7)

where r (m) is the shaft radius and int the integer part function.

In the case of the experimental test bench described 
in this work, given the shaft geometry and the maximum 
torque achievable during operation (16 N m) equation  (7) 
provides a maximum allowable number of pulses per revo
lution of 45. Within this constraint, the choice of the zebra 
tape design is a key factor influencing the performance of 
the proposed torque measurement system. The larger the 
number of pulses per revolution, the larger the samples 
required per revolution, that is the larger the sample fre-
quency of the proposed torque transducer, but the more 
the computational cost needed to implement the data pro-
cessing. For the purpose of this work, the test bench shaft 
was instrumented with two bar codes featuring 8 equal stripe 
pairs, with a stripe width of 5.5 mm, fitting exactly around 
the shaft. The selection of 8 pulses per revolution represents 
a trade-off between uncertainty and computational cost. The 
zebra tape design was selected so that the resulting pulses 
have a 50% duty cycle which makes phase shift measure-
ment processing easier.

Table 1 summarises the features of the zebra tapes used in 
the test bench.

3.2.  Optical sensor output

Figure 6(a) shows how the zebra tape passage determines the 
sensor output. The OP emits an unfocussed beam which lights 
the zebra tape surface. An unfocussed OP has been chosen 
because it allows for variations of sensor to shaft distance 
over a larger depth of field with respect to focused probes. 
However, it produces pulses with lower rising and falling 
edge gradients, with respect to focused probes. Scattered 

Figure 5.  Detail of the contactless shaft torque measurement system.

Table 1.  Features of the experimental zebra tape.

Symbol Description Value

P Zebra tape period (length of each 
black–white segment)

11.0 mm

ppr Number of pulses per revolution 8
θfull_scale Maximum measurable shaft 

torsion angle

π

8
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light is collected back through a detector with a certain angle 
of aperture. Light scattering intensity from the white sur-
face is significantly larger than that from the black surface. 
Therefore, even if the zebra tape surface has a step profile 
(figure 6(b)), the scattered light intensity changes continu-
ously from low to high during the passage of the white stripe. 
The change in the radiation reflected to the detector is not 
abrupt, but undergoes a gradual transition along a switching 
distance XT (figure 6(c)) [27]. The OP voltage output results 
from this gradual change in scattered light intensity due to 
the motion of the black–white stripe through the illuminated 
area (called trip effect) and the first order dynamic response 
of the photodetector (figure 6(d)). A Schmitt trigger is imple-
mented to square the probe output voltage when it crosses 
a pre-set threshold, SL (figure 6(e)), and to convert it into a 
train of constant amplitude pulses. The photodetector signal 
is squared to produce pulses with almost vertical rising and 
falling edges, easing timing and analysis.

This train of square pulses will be phase shifted by torque 
variations, as described earlier. In case of variation of the 

distance between the shaft and the OPs, the amplitude of the 
output voltage from the photodetectors will vary, resulting in 
an amplitude modulated signal. This would affect the train of 
pulses from the Schmidt trigger, which operates on a fixed 
threshold. The effects of this source of uncertainty will be dis-
cussed later in the paper.

3.3.  Data processing

3.3.1.  Signal pre-processing.  In order to automatically 
extract the values of the shaft angular shifts from the two zebra 
tape optical signals, dedicated programmes, known as virtual 
instruments (VIs), were developed and built in the LabVIEW 
environment. Figure 7 shows the data processing flow chart of 
the VIs implemented for pulse train analysis.

The data processing consists of two steps:

	(1)	The shaft rotational speed is calculated by estimating the 
time per shaft revolution from the rising edges of the two 
pulse trains; 

Figure 6.  OP response to zebra tape. (a) Passage of the alternating reflecting and dark stripes measured by the OP sensor; (b) zebra tape 
step profile reflection; (c) scattered light intensity; (d) OP voltage output; (e) Schmitt trigger output.

Meas. Sci. Technol. 29 (2018) 065207



D Zappalá et al

7

	(2)	The shaft absolute twist is calculated by adopting the rising 
edge detection and the cross-correlation approaches.

OP installation and zebra tape mounting offset could cause 
initial misalignment of the pulse trains at the start of recording 
with a consequent erroneous estimation of the initial time 
shift, and hence angular shift. To overcome this problem, the 
signals recorded by the OPs are first initialised when the data 
system acquisition is started. Figures 8(a) and (b) shows an 
example of two pairs of similar pulse trains; they feature the 
same time shift, Δtr, however their recording starts at two 
different positions with respect to the pulses. The time shift 
measured between their first two rising edges will be different, 
Δtr_a and Δtr_b, respectively. In order to avoid this error in the 
measurements, the OP signals, OP1 and OP2, are initialised 

by forcing the recording to start only when both signals are 
in the high or low state, i.e. at the instant tp in figures 8(c) and 
(d). Now, the same time shift, Δtr, is measured based on the 
time between the first rising edges of the initialised signals, 
OP′

1 and OP′
2.

The time at which the rising edges of the two initialized 
signals occur is defined as tiOP′

k
, where i  =  1,2, …m, with m 

equal to the number of rising edges in the initialized signals, 
and k  =  1,2 is the index that identifies the two OPs. The rising 
edge time instants tiOP′

k
 are captured by triggered acquisition 

where the threshold level is set equal to half of the peak-to-
peak signal amplitude. A flicker filter is also applied to remove 
rising edge timing errors resulting from possible signal flick-
ering around the trigger level. Flickering would result in more 

Figure 7.  Data processing flow diagram.
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than one output from the trigger block for each signal rising 

edge, i.e. t2OP′
k
 and t∗2OP′

k
 in figure 9. For each pulse train, the 

filter compares the time interval between two consecutive 
rising edges against that estimated from the expected shaft 
rotational speed, 1500–1900 rpm, and the number of pulses 
per revolution, 8. When the two values do not match, the filter 
acts on the signal to keep only the first output from the trigger 

block and remove all other unwanted outputs, that is t∗2OP′
k
 in 

figure 9. For each signal, the output of the flicker filter is a 
1D array containing m elements representing the rising edge 
times of the train of pulses.

3.3.2.  Shaft rotational speed.  For each zebra tape, the iden-
tified rising edge times, tiOP′

k
, where k  =  1,2, are then used 

to estimate the corresponding shaft speed, nk (tk,j) (rpm), by 
applying conventional speed encoder techniques, according to 
equation (3), as follows:

nk (tk,j) =
60

t(ppr+l−1)OP′
k
− tlOP′

k

� (8)

where l  =  1,2,.., (m-ppr) and tk,j is the mean time of the win-
dows t(ppr+l−1)OP′

k
− tlOP′

k
, calculated as:

tk,j =

∑ j+| ppr
2 |down

n=j+1−| ppr
2 |up

tnOP′
k

ppr
� (9)

where j =
(∣∣ ppr

2

∣∣
up

)
, . . . ,

(
m −

∣∣ ppr
2

∣∣
down

)
, with 

∣∣ ppr
2

∣∣
up and ∣∣ ppr

2

∣∣
downequal to half of ppr rounded up and down, respec-  

tively.
The shaft rotational speed, n (tj), is then calculated as the 

average of those two speeds to minimise the error:

n (tj) =
n1 (t1,j) + n2 (t2,j)

2
� (10)

where tj is given by:

tj =
t1,j + t2,j

2
.� (11)

3.3.3.  Shaft absolute twist.
3.3.3.1.Time shift measurement by direct timing of rising 
edges.    The rising edge detection approach is the most 
straightforward method for determining the time delay 
between the pulses. It is based on the measurement of the 
times at which the rising edges of the two pulse trains occur 
and on the calculation of their relative phase shift, as shown 
in figure 10. In the rising edge detection approach VI, the time 
shift between the two pulse trains associated with the signals’ 
average rising edge times, ∆tr (tiOP′), is calculated as:

∆tr (tiOP′) = tiOP′
2
− tiOP′

1� (12)

Figure 8.  Signal initialisation (a) and (b) similar pulse trains recorded at two different start positions with respect to the pulse state; (c) and 
(d) OP initialisation with signals both in the high or low state.

Figure 9.  Flicker filter.
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where i  =  1,….., m and tiOP′  is defined as:

tiOP′ =
tiOP′

1
+ tiOP′

2

2
.� (13)

As already pointed out, tangential and radial displacements 
between shaft and OPs, typically caused by vibrations or shaft 
deformation, introduce noise in timing of pulses. This noise is 
expected to be periodic, at the rotational frequency or its har-
monics. Therefore, a moving average filter is implemented to 
measure a time delay averaged over a full revolution ∆tr (tj). 
This is implemented as moving average filter over the eight 
delays ∆tr (tiOP′) measured during a full revolution, with 
seven-point overlap over time, allowing the calculation of an 
averaged delay for each pulse, that is one value per zebra tape 
pulse.

The eight-point averaged time shift, ∆tr (tj), is calculated 
as:

∆tr (tj) =

j+| ppr
2 |down∑

i=j+1−| ppr
2 |up

∆tr (tiOP′)

ppr
.� (14)

3.3.3.2.Time shift measurement by cross-correlation.  The 
cross-correlation approach allows the measurement of the 
similarity of the two time series, OP′

1 and OP′
2 , as a function 

of the time-lag applied to one of them. Unlike the rising 
edge detection approach, the cross-correlation VI uses the 
full initialised signals OP′

1 and OP′
2  to estimate their time 

shift and not only the times at which the rising edges occur  
(figure 11).

Cross-correlation is implemented according to [28], as  
circular cross-correlation, defined as:

r12 (k) =
1
N

N−1∑
n=0

OP′
1(n)OP′

2(k − n)� (15)

where k  =  0,…, N  −  1 and N, the length of the two signals, 
is chosen equal to the shaft revolution. This algorithm does 
not require zero padding, but considers the pulse train to be 
periodic.

Circular cross-correlation provides an output with 8 
peaks, equal to the number of pulses per revolution (figure 
11), that correspond to 8 possible time delays, as usual in a 
periodic function. The delay of interest is the smallest one, 
∆tc, provided that the zebra tape period is larger than the 
maximum shift, as discussed in section 3.1, equation (5). The 
other peaks appear because the train of pulses is a periodic 
function.

The signals OP′
1 and OP′

2 are progressively circular cross-
correlated giving one value of the time shift per zebra tape 

Figure 10.  Phase shift estimation through the rising edge detection approach.

Figure 11.  Phase shift estimation through the cross-correlation approach.
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pulse, ∆tc (tj), similarly to the case of the rising edge detec-
tion approach ∆tr (tj).

In both approaches, the calculated time shifts, ∆tr (tj) and 
∆tc (tj), respectively, depend on the shaft speed. According 
to equation (4), they are converted into shaft absolute angular 
shifts, θa_r (tj) and θa_c (tj), respectively, by:

θa_r (tj) =
2π
60

n (tj)∆tr (tj)� (16)

θa_c (tj) =
2π
60

n (tj)∆tc (tj) .� (17)

3.4.  Range, resolution and sampling frequency

For a given zebra tape design (ppr), shaft speed (n) and OP 
sampling frequency ( fOP), the non-intrusive torque measure-
ment system features are:

Range: θRANGE = [−θfullscale , θfull_scale] =

[
− π

ppr
,
π

ppr

]

� (18)

Resolution : δθ =
2πn
60

∗ 1
fOP

.� (19)

Using the calibration curve, θ = m ∗ T , where m is the cali-
bration line slope, equations (18) and (19) allow the estima-
tion of the corresponding torque range TRANGE and resolution 
δT .

TRANGE =
θRANGE

m
� (20)

δT =
δθ

m
� (21)

Sampling Frequency: fc =
2πn
60

∗ ppr
2π

=
n ∗ ppr

60
.�

(22)
Torque samples are then obtained at a non-constant frequency 
which is dependent on the shaft speed.

4.  Calibration and uncertainty analysis

4.1.  System calibration

The non-contact optical torque system was calibrated against 
reference torque measurements from the in-line torque trans-
ducer in order to fully characterise the torque-twist angle 
relationship described by equation (1). The calibration curve 
allows the estimation of the torque acting along the shaft 
by simply recording the zebra tape pulse trains, calculating 
their time shift and hence the shaft angular shift, using either 
method.

Steady state tests were performed on the test rig at four dif-
ferent shaft speeds: 1600, 1700, 1800 and 1900 rpm. For each 
speed, the calibration procedure consisted of the following 
steps:

	(1)	Run the motor to the required testing speed.

	(2)	Record the signals from both the OPs and the torque 
transducer at no-load (0 V applied to the generator stator) 
for around 10 s.

	 (3)	Vary the generator stator voltage to increase the shaft torque 
in steps of 2 N m, starting from an initial torque value of 
1 N m in the case of the tests run at 1600 and 1800 rpm and 
2 N m in the case of the tests run at 1700 and 1900 rpm. For 
each speed, to avoid damage to the generator during opera-
tion, the stator voltage was varied up to a precautionary 
safety limit of its armature winding current of 8 Amps; this 
determined the maximum operational torque. Given the 
available experimental set-up, the calibration range was 
limited to 16 N m, even though the zebra tape had been 
designed with a period allowing measurements up to 62 N 
m, which therefore represents its full-scale input range.

	(4)	Record the signals from both the OPs and the torque 
transducer for around 10 s for each applied torque level.

	(5)	Post-process the OP pulse data and calculate the shaft 
twist using the rising edge detection and cross-correlation 
approaches presented in section 3.3.

	(6)	Build calibration curves by plotting the shaft relative 
twist, calculated according to equation  (4), against the 
corresponding reference torque measured by the in-line 
transducer, whose signal was resampled to match the time 
delay sampling frequency.

The calibration curves resulting from the rising edge and 
the cross-correlation approaches are shown in figures 12 and 
13, respectively, and compared in table 2. They result from 
the linear regression of experimental data by a straight line 
using the least square method. As predicted by equation (1), 
the torque-twist trend is linear under steady state conditions. 
The two calibration curves show a similar trend with satis-
factory R-squared levels, indicating a good fit of the exper
imental data by the regression line. A difference in sensitivity 
of around 2% is observed.

4.2.  Measurement uncertainty evaluation

The measurement uncertainty has been estimated according 
to the ISO GUM (Guide to the expression of uncertainty in 
measurement). The statistical processing of series of exper
imental data obtained in the laboratory conditions has allowed 
a Type A uncertainty estimation. A more comprehensive Type 
B analysis has been performed using the Monte Carlo method, 
where a number of influencing parameters and disturbances 
which could affect the measurement system in a real-world 
application has been considered.

4.2.1. Type A uncertainty.  The regression of calibration data 
has allowed the statistical estimation of the Type A uncertainty 
of measurement, Uexp (table 2), with respect to the maximum 
torque achievable during operation (16 N m), which corre-
sponds to 26% of the torque meter full operating range.

For each case, the standard deviation of the input torque, 
sT , has been estimated by statistical analysis of the residuals 
of the M calibration data with respect to their interpolating 
line as:
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sT =

√√√√ 1
M − 2

M∑
k=1

(
θk

m
− Tk

)2

� (23)

where θ is the shaft relative twist predicted by the calibration 
line. The type A uncertainty relative to the system full-scale 
torque, Uexp, associated with each approach has then been 
calculated, in compliance with the ISO GUM:1995 [29], as 
expanded uncertainty with a coverage factor k  =  2, allowing 
for a 95% confidence level, as:

Uexp(N m) = ksT� (24)

and expressed as a percentage of the measurement system 
full-scale torque, Tfull_scale, as:

Uexp(%) =
uexp(N m)

Tfull_scale(N m)
100� (25)

where:

Tfull_scale =
θfull_scale

m
� (26)

and θfull_scale is the measurement system full-scale twist 
output given in table 1.

In this analysis, the same statistical uncertainty has been 
assumed all over the entire operating range, even if this has 
been estimated by using available experimental data referring 
to the first 26% of the torque meter design range.

The type A uncertainty analysis has taken into account 
experiments at various speed and torque levels, which were 
repeated over several days and performed by different opera-
tors. This provides information on repeatability and reprodu-
cibility of the proposed method.

For the experimental set-up used in this work, the max-
imum measurable angular shift of the system corresponds to 
the full-scale input torque TRANGE = 62 N m, which is approx-
imately four times larger than the calibration range. Within 
this range the system has a resolution δT  of 0.27 N m  if only 
one rising edge is used; however, the resolution decreases by 
ppr if the angular shift is determined by averaging a series of 
ppr angular shifts. In this case ppr  =  8 was used.

Unexpectedly, the cross-correlation approach results show 
a higher dispersion around their best fit curve when compared 
to the rising edge detection approach, resulting in higher uncer-
tainty of the method (table 2). Cross-correlation underperforms 
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Figure 12.  Calibration curve: Rising edge detection approach.
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Figure 13.  Calibration curve: cross-correlation approach.

Table 2.  Parameters of the two calibration curves and their Type A 
expanded uncertainty relative to the system full-scale torque, Uexp.

Method Linear fit equation R2 Uexp (%)

Rising edge θ  =  6.2687 10−3 * T 0.999 ±0.30
Cross-correlation θ  =  6.1303 10−3 * T 0.996 ±0.86
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with respect to direct timing because of the changes in duty cycle 
throughout one shaft revolution and the time shift introduced 
by the Schmidt trigger operating on an amplitude modulated 
photodetector signal. As mentioned, amplitude modulation may 
affect the optical signal because of possible vibrations, shaft 
misalignment or bending; all these phenomena would affect the 
sensor to shaft distance during shaft rotation. In these condi-
tions, after the Schmidt trigger, the variation of duty cycle and 
time shift causes a displacement of the pulse centre equal to 
δd   =   (δtr   +  δtf)/2, as shown in figure 14.

Cross-correlation is more sensitive to pulse shape than 
rising edge timing. Moreover, cross-correlation is intrinsically 
sensitive to the position of the centre of each square pulse. 
These effects together explain the larger dispersion of data 
seen for cross-correlation whenever the optical signal experi-
ences amplitude modulation and a Schmidt trigger is applied. 
It would therefore be expected that cross-correlation would 
better perform on the original photodetector signal, before 
being squared by the Schmidt, but this has not been imple-
mented in this paper.

4.2.2.  Uncertainty analysis using Monte Carlo method 
(MCM).  The propagation of distributions through a mathe-
matical model of the zebra tape torque meter system has been 
implemented by MCM for the evaluation of uncertainty of 
measurement according to the GUM:1995 Supplement 1 [30]. 

Figure 14.  Effect of sensor to shaft distance variation on the OP output.

Figure 15.  Zebra tape torque meter model.

Table 3.  Measurement system model equations.

Method Model

Rising edge detection T = K 2πn
60 ∆tr

Cross-correlation T = K 2πn
60 ∆tc

Figure 16.  PDF propagation of the four independent input 
quantities to provide the PDF of ∆tr (Adapted with permission from 
[30]. Permission to reproduce extracts from ISO publications is 
granted by BSI Standards Limited (BSI) on behalf of International 
Organization for Standardization (ISO). No other use of this 
material is permitted.)
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The measurement uncertainty evaluation has been performed 
with respect to a shaft rotational speed of 1700 rpm at which 
the maximum torque achievable during operation (16 N m) 
was measured.

A mathematical model of the zebra tape torque meter, 
shown schematically in figure 15, has been built to relate the 
output quantity T (i.e. the quantity intended to be measured) 
with the input quantities X (i.e. K, n and Δt) upon which T 
depends. Table 3 summarises the model equations for the two 
approaches.

The shaft torsional stiffness, K, has been estimated as the 
inverse of the slope of the rising edge calibration linear fit 
equation  and its standard deviation, sK , has been computed 
by Type A method according to the GUM [29], that is by per-
forming a statistical analysis of the residuals of the M calibra-
tion data with respect to its inverse interpolating line T = Kθ 
as:

sK =

√√√√√
Ms2

T

M
∑M

j=1 θ
2
j −

(∑M
j=1 θj

)2 .� (27)

The uncertainty of the shaft angular speed n is computed by 
Type A method, by performing a statistical analysis of the 
time series of experimental data from the torque test rig at 
steady state, according to the GUM [29]. The standard uncer-
tainty sn is therefore computed as standard deviation of n, and 
results to be:

sn = 0.23 (rpm).� (28)

In the case of the rising edge approach, the probability density 
function (PDF) for the time shift measured by direct timing of 
each pair of rising edges, g∆tr(η), has been computed through 
MCM, where 106 simulations have been performed to deliver 
a 95% coverage interval for the output quantity according to 
[30]. In this case g∆tr(η) depends on the propagation through 
the model of the PDFs of the following independent input 
quantities (figure 16), each with its own statistical dispersion:

	 •	 the time interval between the OP samples, with an associ-

ated rectangular PDF and 2a 1
fOP

 width, where:

a 1
fOP

=
1

2 ∗ fOP
� (29)

	 •	 the zebra tape laser-printing resolution, with an associ-
ated rectangular PDF and 2ap width, where, assuming a 

1200 dpi laser printer, the printing tolerance, ap, is given 
by:

ap =

(
25.4 ∗ 10−3)

1200
= 2.128 ∗ 10−5 (m)� (30)

	 •	the shaft cylindricity error, with an associated rectangular 
PDF and 2ad width, where, assuming an IT8 tolerance 
class of the shaft, its dimensional tolerance, ad is given by 
[31]; 

	 •	the shaft radial movements (possibly due to vibrations), 
assumed to act in the direction perpendicular to the 
optical sensor axis, with associated Gaussian PDF and an 
assumed standard deviation of:

sν = 60 ∗ 10−6 (m).� (31)

Table 4 summarises the input parameters contributing to the 
uncertainty of ∆tr, u∆tr , each with its associated uncertainty 
intervals used in the model. The amplitude of these intervals 
has been assumed based on knowledge of the technology 
implemented in the system; it is either the width of a flat PDF 
or the standard deviation of a Gaussian PDF, depending on 
the type of parameter. The table  also provides a sensitivity 

Table 4.  Uncertainties and sensitivity analysis of the quantities contributing to u∆tr .

Xj

Standard deviation sj Half-width tolerance aj Sensitivity analysis 
(

d̂f
dxj

)2
ux2

iSymbol Name

1
fOP

OP sampling frequency 4.00 ∗ 10−6 (s) 1.33 ∗ 10−12 (s)
p Zebra tape laser-printing 2.12 ∗ 10−5 (m)a 2.76 ∗ 10−7 (s)
d Shaft cylindricity error 33 ∗ 10−6 (m)a 4.30 ∗ 10−7 (s)
v Shaft movements 60 ∗ 10−6 (m)a 5.63 ∗ 10−10 (s)

a Model assumption.

Figure 17.  PDF propagation of K, n and Δt to provide the PDF 
of T through the zebra tape torque meter model (Adapted with 
permission from [30]. Permission to reproduce extracts from ISO 
publications is granted by BSI Standards Limited (BSI) on behalf of 
International Organization for Standardization (ISO). No other use 
of this material is permitted.)
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analysis, that is an estimate of the contribution to the overall 
uncertainty budget for each input parameter, showing that the 
zebra tape laser-printing and the shaft cylindricity errors are 
the major contributors to u∆tr .

Within each shaft revolution, the standard deviation of ∆tr, 
s∆tr

, has then been then obtained through MCM as the average 
of the eight pulse train rising edges, Δtr, and their PDFs, g∆tr .

In the case of the cross-correlation approach, the same 
Gaussian PDF, with uncertainty u∆tr , has been assumed for all 
the time shifts measured between the rising and falling edges, 
respectively. Unlike the rising edge detection approach, in this 
case the standard deviation of ∆tc, su∆tc

, has been obtained by 
type B analysis [29] as:

s∆tc =
u∆tr√
2ppr

.� (32)

The PDF for T, gT(η), depends on the propagation through 
the model of the PDFs of the independent input quantities, K, 
n and Δt (∆tr or ∆tc, depending on the approach adopted) as 
described in figure 17.

Table 5 summarises the quantities used for the estima-
tion of the uncertainty of T, uT, and their sensitivity analysis, 
showing that, in both approaches, the estimation of ∆t  is the 
major contributor to uT.

For both approaches, table  6 shows the torque measure-
ment type B expanded uncertainty at 95% confidence level 
(i.e. corresponding to two standard deviations) obtained by 
applying the MCM in compliance with the ISO GUM [30] 
and expressed as a percentage of the system full-scale torque 
Tfull_scale.

In both cases, the results show that the application of the 
MCM to a simplified model of the measurement system over-
estimates the overall uncertainty when compared to the type 
A uncertainty obtained by experimental results, as reported in 
table 2. The rising edge detection approach shows the larger 
difference between the values of UMCM and Uexp. Indeed, it is 
reasonable that a type A evaluation based on laboratory data 
underestimates uncertainty, given that MCM takes into account 

all possible sources of uncertainty which may occur in real-world 
applications and not in the controlled laboratory environment. 
This explains the lower value of uncertainty obtained through 
statistical processing of the experimental data. Therefore, the 
uncertainty estimated by MCM sets the maximum value of the 
system uncertainty attainable in practical applications.

5.  Results

Tests have been performed to validate the proposed zebra-
tape torque meter under both static and variable conditions. 
The torque measurements obtained by the zebra tape torque 
meter have been compared with measurements from the in-
line torque transducer (Magtrol) which has been assumed as 
the reference system for all the experimental work, being a 
well-established state-of-the-art technique. Shaft speed was 
also recorded by the zebra tapes.

5.1.  Steady state tests

Figure 18 shows speed and torque results for two steady state 
tests performed at 1700 rpm, 4 N m and 1900 rpm, 10 N m.

Both the cross-correlation (azure solid line) and rising edge 
(red solid line) approaches show good agreement, on average, 
with reference transducer measurements (black dotted line) 
however the zebra tape data appears noisier. This is par
ticularly apparent for torque measurements obtained by cross-
correlation. The causes of noise in this data have been already 
outlined when showing the calibration results however it 
should also be noted that the reference transducer is sampled 
at a much lower rate, possibly reducing its own noise levels. 
The frequency at which noise appears for the optical system 
is significantly higher than any relevant frequencies expected 
in the mechanical torque signal therefore such noise could be 
reduced by low pass digital filtering.

5.2.  Variable torque and speed tests

Finally, variable torque and speed tests have been performed 
to evaluate and compare the response of the two approaches. 
Figure 19 shows the effects of sharp step changes in torque.

The shaft speed was initially set at around 1715 rpm and the 
torque first increased and then decreased in steps of approxi-
mately 2 N m, in the 0–15 N m operating range. Changes in 

Table 5.  Uncertainties and sensitivity analysis of the quantities contributing to uT.

Xj Standard  
deviation sj

Sensitivity analysis

Symbol Name Value Rising edge Cross-correlation

K Shaft torsional stiffness 159.523 N m rad−1a 0.0077 N m rad−1a 5.965 ∗ 10−7 (N m) 5.965 ∗ 10−7 (N m)
n Shaft rotational speed 1700 (rpm)a 0.23 (rpm)a 4.686 ∗ 10−6 (N m) 4.686 ∗ 10−6 (N m)

∆tr Time shift measurement by direct 
timing of rising edges

5.634 ∗ 10−4 (s)a 1.272 ∗ 10−5 (s)b 0.131 (N m)

∆tc Time shift measurement by 
cross-correlation

5.509 ∗ 10−4 (s)a 1.273 ∗ 10−5 (s)b 0.137 (N m)

a Experimental result.
b MCM result.

Table 6.  Torque meter system Type B expanded uncertainty relative 
to the system full-scale torque, UMCM.

Method UMCM (%)

Rising edge ±1.17
Cross-correlation ±1.19
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speed are the result of applied torque that were not countered 
by the variable speed drive. The zebra tape measurements 
allow tracking of the rotational frequency as well as the torque 

during the whole transient. The response of the zebra tape 
torque meter under variable torque and speed test conditions 
is sufficient to track the torque variations imposed on the shaft. 
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Figure 18.  Optical system speed and torque measurement under steady state conditions: (a) and (c) 1700 rpm and 4 N m; (b) and (d) 
1900 rpm and 10 N m.
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Figure 19.  Optical system speed (a) and torque (b) measurements under sharp step torque changes.
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Both the rising edge and cross correlation torque estimations 
follow the step changes well and without any timing delay. 
However, as already noted, the outputs are noisier, especially 
when the cross-correlation approach is applied. Low pass fil-
tering would reduce this noise without affecting torque meter 
response in the band of frequencies of interest for mechanical 
torque measurements.

Additional variable torque and speed tests have been per-
formed by applying a harmonic input torque at three different 
frequencies (0.17 Hz, 0.30 Hz and 0.63 Hz) and at a peak-
to-peak amplitude of approximately 6 N m (figures 20(a) and 
(b)), within experimental limitations. Again, the zebra tape 
torque meter shows a good response under harmonic changes 
of input torque, even if affected by greater high frequency 
noise in the case of the cross-correlation approach.

6.  Comparison with conventional twist angle 
measurement methods

Similarly to the conventional twist angle measurement 
methods [7, 13–15], the time shift between the signals 
recorded by the two zebra tape torque meter OPs is a function 
of the twist of the shaft due to the applied torque. However, 
the non-intrusive system presented in this paper has the sig-
nificant advantages of using less-intrusive, cheaper, easier 
and quicker to install equipment, making it suitable for a 

larger range of industrial applications, even in confined, chal-
lenging or sensitive operating environments, without any sig-
nificant impact on shaft design and mechanical integrity. In 
addition to torque measurement, the zebra tape torque meter 
provides the shaft rotational speed, which allows the mea-
surement of the mechanical power transmitted by the shaft. 
This results in a reduction in the number of sensors in the 
system and hence saving in space, weight and complexity, 
which is particularly important for many industrial appli-
cations, such as in the naval and wind energy sectors. The 
measurement system is reliable, robust and straightforward to 
use. The zebra tapes can be designed to be fitted or retrofitted 
on any shaft diameter and material, while all the electronic 
components remain on the static part of the system, making 
the system compatible with harsh and polluted environments. 
High measurement accuracy and resolution can be achieved 
by accurately designing the width of the zebra tape black and 
white stripes to suit the particular application. Thanks to the 
easy glue-on installation of the zebra tapes, the measurement 
system can be moved to other similar installations easily in 
a very short amount of time. This is ideal when torque moni-
toring forms part of the final check-out of multiple machines. 
By simply modifying the separation distance of the two zebra 
tapes along the shaft, when its length allows, different mea-
surement sensitivities can be achieved according to the field 
application requirements. This would generally result in 
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0.63 Hz).
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sensitivities higher than conventional optical torque measure-
ment systems.

7.  Conclusions

This paper presents a non-intrusive technique for shaft speed 
and torque measurement consisting of a set of two zebra tapes 
and OPs, one at each end of the shaft. The method has been 
experimentally implemented and validated under both static 
and variable conditions. The following specific conclusions 
arise:

	 •	As the shaft rotates, each optical sensor generates a pulse 
train signal proportional to the light intensity reflected by 
the zebra tape stripes. Shaft rotational speed has been cal-
culated by measuring the times at which the rising edges 
of the pulse trains occur.

	 •	Torque has been estimated by measuring the angle of twist 
from the pulse train time shift measurements through the 
application of rising edge detection and cross-correlation 
approaches.

	 •	The contactless, optical torque measurement system 
performance has been demonstrated by comparing the 
results from both approaches against reference measure-
ments from an in-line torque transducer mounted on the 
test bench shaft.

	 •	Experimental measurements under steady state condi-
tions, performed to calibrate the contactless system, show 
a linear relationship between torque and twist, in perfect 
agreement with theoretical predictions.

	 •	Uncertainty has been estimated according to the ISO 
GUM. Type A analysis of experimental data has provided 
an expanded uncertainty relative to the system full-
scale torque, of  ±0.30% for the rising edge approach 
and  ±0.86% for the cross-correlation approach. 
Statistical variations of the parameters affecting system 
performance under real-world operating conditions 
have been simulated through the Monte Carlo method 
providing, in the worst case, an estimation of the system 
expanded uncertainty of  ±1.19%.

	 •	The higher uncertainty associated with the cross-correla-
tion method is shown to be due to the combined effect of 
its higher sensitivity to the pulse shape and to the posi-
tion of its centre. Low pass digital filtering would reduce 
the noise associated with the cross-correlation approach 
without affecting the torque meter response.

	 •	The rising edge and the cross-correlation torque meas-
urements correlate closely with the in-line transducer 
measurements under both steady state and variable test 
conditions, although showing a higher level of noise.

	 •	Unlike conventional in-line torque transducers and the 
conventional strain gauge technique, the proposed zebra 
tape torque meter does not require costly embedded 
sensors, electronics or wires on the rotating shaft. 
Comparing with conventional twist angle measurement 
methods, the proposed methodology is less intrusive, 
simpler and cheaper to implement, making it suitable to a 

larger variety of engineering applications. Measurement 
accuracy and resolution can be easily adapted to the field 
application requirements by carefully designing the zebra 
tapes and their separation along the shaft.
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Abstract: Power converter reliability is critical for permanent magnet synchronous generator (PMSG) wind turbines. Converter
failures are linked to power module thermal loading but studies often neglect turbine dynamics, control and the impact of wind
speed sampling rate on lifetime estimation. This study addresses this using a 2 MW direct-drive PMSG wind turbine model with
a two-level converter, and simulating junction temperatures (Tj) using a power module thermal equivalent circuit under various
synthetic wind speed conditions. These synthetic wind conditions include constant and square wave profiles representing stable
and gusty wind conditions. Responses to square wave wind speeds showed that the lower the gust frequency, the higher ΔTj
becomes, demonstrating that low turbulence sites have greater thermal variation in the converter. In contrast, wind speed
variations with frequencies >0.25 Hz deliver only small increases in ΔTj. It is concluded that reasonable approximations of Tj
profiles can be made with 0.25 Hz wind speed data, but that lower data rate wind measurements miss essential, damaging
characteristics.

1 Introduction
To meet EU renewable energy targets for 2020 and beyond, the
levelised cost of energy (LCoE) of offshore wind must be reduced
to below £100/MWh [1]. Operation and maintenance (O&M)
accounts for ∼30% of the LCoE [2]. A key aspect of O&M is
turbine sub-system reliability. By understanding which components
have the greatest impact on downtime and power production,
O&M resources can be focused to minimise turbine disruption and
reduce the LCoE of offshore wind.

1.1 Wind turbine power converter reliability

Numerous studies have explored the reliability of wind turbine sub-
systems using operational data. Carroll et al. [3] examined a large
dataset for offshore wind turbines with mixed turbine technology to
determine the main causes of failure and concluded that power
converters had a typical failure rate of ∼0.2 failures/turbine/year,
much lower than the highest failure rate of > 1 failure/turbine/year
for pitch systems. However, a more focused study on turbine type
[4] found that the failure rate of fully-rated converters (FRC) in
permanent magnet synchronous generator (PMSG) turbines was
0.593 failures/turbine/year compared with 0.106 failures/turbine/
year for partially-rated converters in doubly fed induction
generator turbines. This suggests that the unique operating
conditions of PMSG-FRCs are causing higher failure rates.
Furthermore, Spring et al. [5] examined large wind turbine datasets
and used expert knowledge to determine the impact of component
failure to turbine downtime, compiling a top 30 list of failure
sources. It was concluded that power converters were the highest
source of turbine downtime, with their failure modes occupying the
top 15 positions. Converter reliability must, therefore, be examined
with a focus on the FRC in PMSG turbines.

Of the failures outlined in [4], power module failure is the
failure mode for nearly all major converter repairs. Traditionally,
power module failure has been linked to power module thermal
loading, where the variation of temperature in the insulated gate
bipolar transistors (IGBT) and diode cases causes fatigue through
expansion and contraction between package layers (Fig. 1a). The
temperature used for reference is the virtual junction temperature,
(ΔTj,IGBT, ΔTj,diode), which is a virtual representation of the chip p–
n junction temperature (Fig. 1b). 

1.2 Power converter reliability studies

This approach has been applied in a number of studies to explore
the expected reliability of power converters in wind turbines [7–
16]. However, these studies often have limitations. Some studies
neglect the impact of wind turbine dynamics and control, so wind
speed inputs are directly converted into a Tj [7–9], which will
deviate significantly from the true Tj profile in the converter. The
use of wind speed distributions [8, 10] and large time steps, e.g. 3-
hourly [11] neglects the impact of wind speed history, which has
been shown to have a large impact on the current loading, and
subsequently, the thermal loading of the converter [17]. For
example, the use of supervisory control and advisory data
acquisition (SCADA) data may only provide a mean and maximum
wind speed over a 10 min period, which may hide a large amount
of variation that is causing damage to the converter.

Some studies have included both realistic wind speed profiles
and drive train models [12–15]. However, only two have studied a
PMSG wind turbine [14, 15], and these two studies disagree
whether high-frequency wind speed events impact the thermal
loading of the converter significantly. There is therefore a need for
a detailed study into the impact of operating conditions on power
converter reliability to help inform how the turbine should be
operated in order to extend its life and reduce the LCoE.

1.3 Research contributions

These limitations mean that operational profiles and failure data
may not be representative of converter operation in the field, and
there is no consensus on the required wind speed data frequency
for accurate thermal simulation. This paper addresses these
limitations by identifying the temporal fidelity over which wind
events (such as gusts) cause the highest thermal variation. The
minimum wind speed sampling frequency that will still provide
accurate thermal profile simulation can then be determined. The
impact of modelling assumptions on the estimated Tj profiles is
also explored. These results will provide guidance for future
simulation and experimental studies to improve converter
reliability analysis accuracy, with an aim of improving best
practice in both academia and industry.

To simulate these thermal loading profiles, a drive train model
(Section 2.1), power loss model (Section 2.2), thermal model
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(Section 2.3), and wind inputs (Section 2.4) are required. The
impacts of temporal fidelity and modelling assumptions were
explored through an analysis of individual Tj cycles (Section 3.1),
comparison of constant wind speed results with a comparable study
(Sections 3.2 and 3.3) and analysis of the converter response to
synthetic wind speed time series (WSTS) (Section 3.4). A
summary of the main findings is given in Section 4.

2 Approach
First, an approach to identifying the thermal loading of a wind
turbine power converter was developed as follows:

• Modelling of a wind turbine drive train to provide the current
throughput of the converter.

• Modelling of the resultant power losses in the converter due to
the current throughput.

• Modelling the power module thermal processes in response to
the power losses.

• Simulation of power module thermal response to selected wind
speed inputs.

Fig. 2 illustrates the full-system model. U is the incoming wind
speed, Isw is the converter switch current, VDC is the DC link
voltage, and Ploss is the power module device switching losses. 

This section outlines the details of each of the sub-systems.

2.1 Drive train model

The drive train model developed for this work was a 2 MW FRC-
PMSG, direct-drive turbine. The model was split into five sub-
systems: rotor power extraction, drive train dynamics, generator,
machine-side converter (MSC), and turbine control. Fig. 3 provides
a summary of the drive train model. Tt is the turbine torque
extracted from the wind, Tm is the mechanical torque resulting
from the shaft stiffness and damping, Tg is the electromagnetic
torque, ωt is the turbine rotational speed, ωg is the generator
rotational speed, β is the pitch angle, βref is the reference pitch
angle, Iabc is the generator output current, Vt,abc is the generator
terminal voltage applied by the MSC, and Vref,abc is the reference
MSC output voltages. 

This section outlines the core aspects of each sub-system.
Detailed descriptions can be found in [17, 18].

2.1.1 Turbine power extraction: Tt from the wind is calculated
using the following equation:

Tt = 0.5Cpρπr2U3

ωt
(1)

Cp is the power coefficient, ρ is air density, and r is the turbine
radius.

Cp depends on the tip speed ratio (λ) and β. The Cp, λ, and β
relationship is turbine specific but it is typical to use a numerical
approximation (2) and (3) [19], with λ calculated using (4)

1
λi

= 1
λ + Htβ

− Kt
β3 + 1 (2)

Cp = At
Bt
λi

− Ctβ − Dtβ
Et − Ft e( − Gt/λi) (3)

λ = ωtr
U (4)

At to Ft and Kt are turbine specific constants. The values used can
be found in the Appendix.

Fig. 1  Chip layout and packaging for typical power module devices. Figures adapted from [6]
(a) Typical IGBT power module packaging with no base plate. Areas of fatigue include the bondwire, the bondwire bonds, and the chip solder/sintered layer, (b) Internal structure of
a typical p–n diode chip showing the location of the p–n junction used as the virtual reference point for Tj,diode

 

Fig. 2  Summary of drive train and converter thermal model
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2.1.2 Drive train dynamics: Tt is applied to the drive shaft. The
drive train can be modelled as a mechanical mass-spring-damper
system which dynamically impacts the Tm applied to the generator.

The drive train was modelled as a two-mass system, rather than
a lumped-mass system, to include the dynamic effects of shaft
stiffness and damping. The two-mass system is defined by the
following equation [20]:

Jt 0
0 Jg

αt

αg
+

Cd −Cd

−Cd Cd

ωt

ωg
+ K −K

K −K
θt

θg
=

Tt

Tg
(5)

Jt, Jg are the moments of inertia of the turbine and generator,
respectively, θt, θg are the rotational displacements of the turbine
and generator, respectively, Cd is the shaft damping coefficient, K
is the shaft stiffness, and αt, αg are the rotational accelerations of
the turbine and generator, respectively. The expanded matrix can be
solved numerically, with Tm calculated using the following
equation:

Tm = ωt − ωg Cd + θt − θg K (6)

2.1.3 Generator: The generator model used is a second-order
non-salient PMSG in the dq0 reference frame [21] with a current
rating of 1868 Arms. The mechanical component was modelled
with the torque swing equation. The generator parameters can be
found in the Appendix.

2.1.4 MSC: In a typical wind turbine, the converter is comprised
of an MSC and grid-side converter (GSC). The role of the MSC
and GSC differs depending on control strategy but the MSC
typically controls the speed of the wind turbine for optimum power

production whilst the GSC controls power export to maintain the
DC-link voltage.

Due to the turbine's variable speed operation for maximum
power extraction, the MSC experiences a more varied operating
profile compared with the GSC, which operates at fixed frequency.
The MSC is consequently of greater interest for reliability analysis.
Here, only the MSC is modelled while the GSC is replaced with a
constant voltage source of 1150 VDC (± 575 VDC).

The MSC parameters were based on the power modules found
in the SEMIKRON SKSB2100GD69/11-MAPB stacks [22]. These
stacks have a maximum DC voltage of 1200 V and a maximum
current of 1000 Arms. The stacks use SKiiP2013GB172-4DWV3
half-bridge integrated power modules [23].

The voltage output of the MSC is determined by Vabc,ref from
the machine-side controller (Section 2.1.5). Pulse width
modulation (PWM) converts the modulated Vabc,ref (Vm) into a
switching pattern for the IGBTs in order to produce the three-phase
converter output voltage (Vc,abc). Space vector PWM was chosen
and therefore Vm was calculated using the following equation:

Vm = 3
VDC

Vabc, ref (7)

The current through the devices is split between diode and IGBT
depending on the current polarity. Since two parallel stacks are
required to reach the current rating of the turbine (Section 2.1.3),
this current is split equally between stacks [24].

2.1.5 Turbine control: Power extraction is controlled in two ways
depending on operating region. Maximum power point tracking
(MPPT) is used for below rated speed, while active pitch control is
used above rated speed to limit power.

Fig. 3  Drive train model summary
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For MPPT, Cp must be maximised (Cp,max). By controlling ωt,
the optimum λ can be maintained (λopt) when below rated wind
speed

ωt, opt(u) = Uλopt
r (8)

ωt,opt(u) is the optimum turbine rotational speed at a given wind
speed.

As U is not measured in this control strategy, ωt,opt is unknown.
Instead ωt is varied until the turbine reaches steady state, which
occurs when ωt = ωt,opt. ωt is varied via Tg, which is carried out
using direct-quadrature-zero current (Idq0) control applied to the
MSC. Fig. 4a illustrates the machine-side control algorithm. Vd,q
are the d,q reference frame voltages, Vd,q,ref are the required d,q
terminal voltages, Id,q,ref are the reference Id,q, rs is the PMSG

stator phase resistance, Ld,q are the PMSG d,q armature
inductances, φ is the permanent magnet flux linkage, KMPPT is a
turbine specific constant, ωt,max is the maximum turbine rotational
speed considered by the controller, and ωe is the magnetic field
rotational speed, which is related to ωg via the generator pole pairs.

To determine the required generator currents, ωt is related to the
required Tg (Tref) via the turbine power curve using a turbine
specific constant KMPPT (9) and (10). The reference Iq is calculated
using a known relationship between Iq and Tg in the generator (11).
Id is maintained at 0 A [25]. These currents are achieved by
applying a controlled voltage on the generator terminals using the
MSC

Tref = KMPPTωt
2 (9)

Fig. 4  Schematics of
(a) Machine side controller, (b) Pitch controller, (c) Pitch actuator
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KMPPT = 0.5Cp, maxρπr2 r
λopt

3

(10)

Iq, ref = 2p
3φTref (11)

To note, the machine-side controller is not constrained by the rated
turbine rotational speed (ωt,rat) but by a higher maximum (ωt,max).
This allows the machine-side controller to deal with sudden
increases in wind speed for which the pitch controller is too slow to
respond effectively. This provides a similar controller interaction to
[26].

Pitch control limits power extraction when above rated wind
speed by pitching the blades away from the optimum angle,
reducing the turbine's Cp.

There are a number of pitch control methods available [27]. For
this work, the difference in ωt and rated ωt (ωt,rat) is used to
produce a β error (βerr) (Fig. 4b). βerr is added to the current β to
produce a reference β (βref) and applied to the pitch actuator
(Fig. 4c). The pitch actuator is modelled as a first-order dynamic
system [28] with limits on β and the rate of change of β (βrate).
These values can be found in the Appendix.

2.1.6 Drive train model summary: The drive train model
consists of the following key features:

• Modelled as a direct-drive 2 MW PMSG wind turbine to align
with modern turbine technology with sufficient data for
modelling.

• Mechanical drive train modelled as a two-mass model to capture
the critical dynamics of a wind turbine drive train.

• FRC with MSC based on SEMIKRON Renewable Energy
stacks to provide realistic converter parameters.

• GSC modelled as an ideal DC link to isolate impacts of wind on
the MSC.

• Turbine controlled using ωt as the reference signal, with both
MPPT and active pitch control as in the majority of modern
wind turbines.

2.2 Converter power loss model

To convert the current throughput into Tj profiles, power losses
must be calculated, specifically:

• The IGBT and diode conduction losses.
• The IGBT switching losses and diode reverse recovery (RR)

losses.

The conduction and switching losses are summed for each
device. The power loss model used is based on [29, 30].

2.2.1 Conduction losses: Conduction losses depend on device
internal resistance so are calculated using the device voltage and
current

PC, IGBT = Vce Ic (12)

PC, diode = Vf If (13)

PC,IGBT and PC,diode are the IGBT and diode conduction losses,
respectively, Vce is the IGBT collector–emitter voltage, Vf is the
diode forward voltage, Ic is the IGBT collector current, and If is the
diode forward current.

Ic and If are the input currents. Vce and Vf are functions of Ic and
If, respectively, and the device Tj. The functions are given in the
manufacturer's data sheet [23] for a Tj of 25 and 125°C. Vce and Vf
are calculated by interpolating between the values given at these
reference temperatures.

2.2.2 Switching/RR losses: Switching and RR losses occur when
there is a change in direction of voltage and current. Device
response is not instantaneous but occurs over nanoseconds [29].
Nanosecond simulation is impractical for run times longer than a
few seconds and the energy loss information given in
manufacturer's datasheets is not detailed enough for accurate
temporal loss simulation. For example, the energy loss during
switch on (Eon) and switch off (Eoff) are not given separately, but
reported as a summation of the two (Eon+off) [23]. As such, a
simplified approach has to be taken.

It has been assumed that the energy loss is given by the
conditions at the first low-high (L-H) switching instance. The
energy is modulated over the switching cycle (between L-H and the
next L-H) to provide a constant switching power loss. This was
deemed acceptable as the device thermal time constants (μs-ms)
will dominate the thermal profile [29].

With the above assumptions, the switching/RR losses were
found by

(i) Determining the energy losses at L-H switching events. The
switching/RR energy loss is given as a function of input current at
two reference VDC [23] and is assumed to be linear. The IGBT
energy loss is Eon+off, whilst the diode energy loss is twice the
reverse energy loss (Err).
(ii) Calculating the equivalent modulated power losses over the
switching cycle using the following equations [30]:

Psw t:Ts, th: t + Tp, sw t = Eon + off(t)
Tp, sw(t) (14)

Prr t:Ts, th: t + Tp, rr t = Err(t)
Tp, rr(t) (15)

Psw, T j t = 1 + TCEsw T j, IGBT t − Tref Psw t (16)

Prr, T j t = 1 + TCErr T j, diode t − Tref Prr t (17)

Psw is the IGBT switching power loss, Prr is the diode RR power
loss, t is the time step, Ts,th is the thermal sampling time, Tp,sw is
the IGBT switching time period, Tp,rr is the diode RR time period,
Psw,Tj, Prr,Tj are the Tj corrected Psw and Prr, respectively, TCEsw,
TCErr are the switching loss and RR temperature coefficients,
respectively, and Tref is the reference temperature of the energy loss
look-up tables (LUTs).

2.3 Thermal loss model

Converter thermal modelling can be carried out in three ways:

• Thermal equivalent circuits using resistor–capacitor (RC)
networks [8, 10–12, 14–16].

• Thermal diffusion equations [13].
• Finite-element analysis [7].

As the RC network data was readily available, a common
practice approach of thermal equivalent circuit modelling was
used.

The data given in [23] is for a Foster RC network. To provide a
more accurate half-bridge temperature profile the Foster thermal
resistance (Rth,f) and time constant (τ) parameters were converted
into RC parameters [31], and then converted into Cauer RC
parameters to provide a more realistic thermal profile throughout
the device [32]. Fig. 5 gives the half-bridge Cauer RC network.
The parameters are available in the Appendix. 

The power losses (Ploss) are dependent on Tj and therefore the
power loss and thermal sub-systems must be run concurrently. Due
to the power-thermal inter-dependency, the initialisation of Cth
temperatures was solved iteratively. The steady-state temperatures
are related to the Rth only [30]. Therefore, initial temperatures were
set throughout the device, and then the power losses and
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temperatures were iteratively updated until steady state was
reached.

2.4 Wind speed inputs

Wind speed and converter current throughput are partly decoupled
by the drive train inertia and control [17]. As such, it can be
challenging to determine which characteristics of a WSTS have the
largest impact on thermal loading.

To address this, experiments have been constructed which use
synthetic WSTS to isolate potential wind speed characteristics and
determine their impact on thermal loading. Square waves have
been used to represent sudden changes in wind speed, which was
validated against high-frequency wind speed data. The tests are
carried out over 65 s, with the first 5 s carried out at constant wind
speed to minimise the impact of variations in the input current. For
the square wave tests this constant wind speed represents the
average power wind speed, which is slightly higher than the
average wind speed. The model time step is also much smaller than
the test period to ensure it does not influence the results; 5 × 10−6s
for the drive train, and 5 × 10−5s for the thermal simulation.

2.5 Summary

To summarise, a Simulink model of a wind turbine drive train and
power converter thermal network has been constructed. This allows
for any wind speed profile to be entered and the corresponding
power module thermal profiles be produced.

3 Results and discussion
This section outlines the analysis performed on Tj profiles
produced in response to constant and square wave WSTS.

3.1 Individual Tj cycles

The power loss and temperature profiles over individual power
cycles were examined. Fig. 6 compares the diode and IGBT current
Tj profiles at a constant 12.7 m/s. The Tj profile for the diode
(Fig. 6d) is comparable with the expected response found in
Fig. 5.2.13 in the manufacturer's handbook [30], although it should
be noted that the manufacturer's data considers only the average
power loss of the switching cycle, rather than individual switching
events. This simulation output can show higher frequency
temperature variation than revealed in the manufacturer's data. 

This higher frequency temperature variation becomes most
apparent in the IGBT (Fig. 6c), particularly in the first half of the
current cycle. This can be attributed to the converter being
connected to a PMSG. The PMSG reactance causes the current to
be out-of-phase with the voltage, and therefore the switching
cycles are not distributed symmetrically over the input current,

with a period of low voltage (Fig. 6a). The low voltage means the
IGBT has a smaller duty cycle. Where there is infrequent current
due to a low duty cycle (Fig. 6a), Tj varies more (Fig. 6c). This
effect is not seen in the diode as the current not flowing through the
IGBT must pass through the diode, creating a near continuous
current throughput (Fig. 6b) and therefore a smooth Tj response
(Fig. 6d).

3.2 Constant wind speeds

Fig. 7 shows the thermal response to constant WSTS for an IGBT
and diode with an ambient temperature (Ta) of 40°C [8]. The mean
Tj increases non-linearly as wind speed increases due to the cubic
relationship between wind speed and power. The ΔTj also increases
due to the higher power loss per cycle, and the ΔTj frequency
increases due to the higher generator rotational speed. 

The diode temperatures Tj and ΔTj (Fig. 7b) are consistently
higher than the IGBT (Fig. 7a). This is due to the higher power
losses experienced by the diodes and the higher Rth of the diodes.
The higher diode Rth (K/W) means that for every watt of heat loss,
the diode experiences a greater rise in temperature than the IGBT.
This is then coupled with the greater power losses due to the more
continuous current flow through the diode (Section 3.1), causing
the higher Tj and ΔTj. This was also found for the MSC devices in
[14] and suggests that the diode is more vulnerable to thermal
cycling, with both higher mean Tj and ΔTj.

3.3 Study comparison

The results in Figs. 7a and b were compared with the 1.55 MW
turbine in [14] (Fig. 7c); it is assumed the scaled power ratings
would have limited impact on the thermal loading as the converter
rating would also be scaled, leading to comparable Tj profiles for a
given wind speed. However, whilst it was found that the ΔTj for
both IGBTs and diodes was comparable at a given wind speed, the
mean Tj for a given wind speed was higher in this study than in
[14], despite Ta being 10°C lower. This is in part is due to the lack
of Rth value for the heatsink in [14]. At steady-state conditions this
will create a higher case temperature (Tc) and therefore higher
mean Tj. The mean Tj change from 12 to 8.5 m/s is also much
lower in [14]. This suggests that the MSC in this work is more
susceptible to Tj rises due to the higher Rth values in the devices.
This highlights three key conclusions that must be made.

• The ΔTj magnitude for IGBT and diodes is consistent with those
found in [14], but there is greater variation in mean Tj between
wind speeds in this study.

• The value of Ta can have a large impact on the mean Tj value.

Fig. 5  Half-bridge Cauer RC network (one IGBT and diode represented). PIGBT1 is the IGBT power loss, Pdiode1 is the diode power loss, Rth,c is the Cauer
thermal resistance, and Cth,c is the Cauer thermal capacitance
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• The inclusion of the heatsink thermal parameters in the model
causes a significant increase in the mean Tj.

3.4 Response to varying wind speed input

The Tj response of the power module to a range of square wave
WSTS is detailed to understand what might be masked by using
SCADA data in lifetime/temperature swing calculations. For
comparison, the maximum Tj swing over the simulation period
(max ΔTj) have been plotted for square gust amplitudes of 1 and 2 
m/s, for varying frequencies and mean wind speeds, for both IGBT
and diode (Fig. 8). 

In general, the higher the frequency of wind speed variation, the
lower ΔTj becomes. This is as the turbine inertia acts as a low-pass
filter, restricting the high-frequency wind speed variation being
transmitted as current variation. Indeed, wind speed variations with
frequency >0.25 Hz lead to a minimal increase in ΔTj compared
with the constant wind speed case (0 Hz). Therefore, reasonable
approximations of Tj profiles can be made (within 1°C) with 0.25 
Hz wind speed data. Furthermore, these results imply that lower
turbulence wind farm sites, such as offshore, have more damaging
thermal profiles in the converter than higher turbulence onshore
sites.

There are exceptions to this trend. ΔTj becomes relatively
consistent below 0.03 Hz. This is because the turbine has time to
respond to the change of wind speed and reaches its steady
operating state. The turbine is then at this steady-state condition
long enough for Tj to reach its maximum before the wind speed
reduces. Lower frequencies will increase the number of times that
the maximum Tj is reached during a particular gust, but will not
affect the maximum Tj. The same will also be true for the
minimum Tj. Therefore, gust frequencies of 0.03 Hz and below
provide the maximum ΔTj.

These results show that the use of one wind speed data point for
a long time period, e.g. 10 min SCADA data, 3 hourly data found
in [11], or the use of a wind speed distribution in [8, 10], can mask
a large amount of information and will underestimate the Tj
variation significantly; in Fig. 8d the diode ΔTj at Um of 12 m/s
increases by up to 71%. Therefore, these results agree with the
conclusions in [15] that higher frequency wind speed data is
required for accurate Tj profile estimation, and it is suggested that a
minimum WSTS frequency of 0.25 Hz is required, though it is
recognised that this will not always be available/practical. This,
however, would reduce the amount of data required for studies
such as in [12–15]. The results at higher Um also indicate that the
unique operating conditions may have a significant effect on the Tj
profile experienced by the power converter, and therefore the lack
of drive train dynamic modelling in [7–9] will change the Tj
profiles significantly.

4 Conclusions
The power converter is reliability critical for FRC-PMSG wind
turbines. Converter failures are typically linked to the thermal
loading of the power module. This paper models the converter
thermal loading when the turbine is subjected to various synthetic
WSTS to explore and demonstrate the impact of the frequency of
wind speed variation on power converter thermal loading.

The thermal simulation has three main parts: a PMSG drive
train model, a converter power loss model based on conduction and
switching/RR, and a thermal equivalent circuit model. Both
constant and square wave WSTS were tested to replicate real wind
characteristics. From the results, it can be concluded that:

• At high wind speeds the switching pattern of the IGBT causes
intermittent Tj profiles.

Fig. 6  Cycle view of
(a) IGBT current with the current waveform peak magnified, (b) Diode current with the current waveform peak magnified, (c) IGBT Tj, (d) Diode Tj at a constant 12.7 m/s
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• The diodes experience greater thermal loading than the IGBTs in
all comparative cases.

• A comparison with another study showed that the inclusion of
heat sink thermal parameters and ambient temperature are
important for providing accurate Tj profiles.

• The lower the frequency of wind speed variation, the higher ΔTj
becomes, implying that low turbulence sites such as offshore
have greater thermal variation, and therefore damage, in the
converter.

• For the first time, the minimum wind speed data frequency for
accurate converter thermal simulation has been determined.
Wind speed variations with frequency >0.25 Hz have a small
increase in ΔTj and therefore reasonable approximations of Tj
profiles can be made with 0.25 Hz wind speed data. Wind speed
data at lower frequencies allow simulations to overlook
damaging temperature variations.
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Fig. 7  Tj response to constant wind speeds in the MPPT region for
(a) IGBT, (b) Diode, (c) Results found in [14] for a 12 m/s input
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7 Appendix
 
Pt,rat is the rated turbine power, frat is the rated frequency, Urat is
the rated wind speed, Vl,rat is the rated line voltage, Irat is the rated
current, Trat is the rated torque, Vf is the IGBT forward voltage, Vfd
is the diode forward voltage, Tf,t is the IGBT fall time and tail time,
respectively, Ron is the IGBT on-state slope resistance, Pp,id,iq are
the proportional gains for the pitch, Id, and Iq controllers,
respectively, Ip,id,iq are the integral gains for the pitch, Id, and Iq
controllers, respectively, and fsw is the switching frequency (see
Table 1). 

Table 1a Continued
Parameter Value Reference
At 0.22 [33]
Bt 116 [33]
Ct 0.4 [33]
Dt 0 [33]
Et 0 [33]
Ft 5 [33]
Gt 12.5 [33]
Ht 0.08 [33]
Kt 0.035 [33]
Pt,rat 2.0 MW [21]
ωt,rat 22.5 rpm [21]
frat 9.75 Hz [21]
λopt 6.3 —
Cp,max 0.438 —
Urat 12.7 m/s —
r 34 m —
ρ 1.225 kg/m3 [25]

Jt 2.92 × 106 kg/m2 [34]

Jg 200 kg/m2 [35]

K 4.0 × 107 Nm/rad [34]

Cd 6.72 × 106 Nms/rad —

Vl,rat 690 V(rms) [21]
I,rat 1867.76 A(rms) [21]
Trat 848.826 kNm [21]
Rs 8.21 × 10−4 Ω [23]

Ld 1.5731 mH [23]
p 52 [23]
φ 8.24 Vs (peak) [23]
Vf 0.95 V [23]
Vfd 1.9 V [23]
Ron 0.925 mΩ [23]
VDC 1150 V —
βmax 45° [36]
βmin 0° [36]
βrate,max 8°/s [36]
βrate,min −8°/s [36]
τ 0.5 s [37]
Pp 3.357 —
Ip 0.012 —
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Table 1b Drive train parameters
Parameter Value Reference
Pid −0.148 —
Iid −5.377 —
Piq −0.155 —
Iiq −2.689 —
fsw 2 kHz [22]
Rth,c,IGBT(1) 1.5 × 10−3 K/W —

Rth,c,IGBT(2) 7.3 × 10−3 K/W —

Rth,c,IGBT(3) 5.9 × 10−3 K/W —

Rth,c,IGBT(4) 2.5 × 10−3 K/W —

Rth,c,IGBT(5) 0.37 × 10−3 K/W —

Cth,c,IGBT(1) 0.55 Ws/K —
Cth,c,IGBT(2) 3.61 Ws/K —
Cth,c,IGBT(3) 35.90 Ws/K —
Ch,c,IGBT(4) 476.61 Ws/K —
Ch,c,IGBT(5) 4.81 × 103 Ws/K —

Rth,c,diode(1) 2.8 × 10−3 K/W —

Rth,c,diode(2) 10.2 × 10−3 K/W —

Rth,c,diode(3) 10.5 × 10−3 K/W —

Rth,c,diode(4) 11.9 × 10−3 K/W —

Rth,c,diode(5) 8.6 × 10−3 K/W —

Rth,c,diode(6) 0.94 × 10−3 K/W —

Cth,c,diode(1) 0.773 Ws/K —
Cth,c,diode(2) 1.45 Ws/K —
Cth,c,diode(3) 4.90 Ws/K —
Cth,c,diode(4) 36.07 Ws/K —
Cth,c,diode(5) 577.76 Ws/K —
Cth,c,diode(6) 1.60 × 104 Ws/K —

Rth,c,h(1) 0.79 × 10−3 K/W —

Rth,c,h(2) 3.1 × 10−3 K/W —

Rth,c,h(3) 4.3 × 10−3 K/W —

Rth,c,h(4) 0.88 × 10−3 K/W —

Rth,c,h(5) 0.14 × 10−3 K/W —

Cth,c,h(1) 337.28 Ws/K —
Cth,c,h(2) 409.76Ws/K —
Cth,c,h(3) 1.37 × 103 Ws/K —

Ch,c,h(4) 1.91 × 104 Ws/K —

Ch,c,h(5) 1.30 × 104 Ws/K —

TCEsw 0.003 [30]
TCErr 0.006 [30]
Tref 125°C —
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Abstract. The ability to detect faults and predict loads on a wind turbine drivetrain’s 

mechanical components cost-effectively is critical to making the cost of wind energy 

competitive. In order to investigate whether this is possible using the readily available power 

converter current signals, an existing permanent magnet synchronous generator based wind 

energy conversion system computer model was modified to include a grid-side converter 

(GSC) for an improved converter model and a gearbox. The GSC maintains a constant DC link 

voltage via vector control. The gearbox was modelled as a 3-mass model to allow faults to be 

included. Gusts and gearbox faults were introduced to investigate the ability of the machine 

side converter (MSC) current (Iq) to detect and quantify loads on the mechanical components. 

In this model, gearbox faults were not detectable in the Iq signal due to shaft stiffness and 

damping interaction. However, a model that predicts the load change on mechanical wind 

turbine components using Iq was developed and verified using synthetic and real wind data. 

1.  Introduction 
Extreme wind conditions such as gusts can lead to very large loads on the turbine that cause fatigue, 

shut-downs and damage to components such as the gearbox [1]. In response the condition of wind 

turbine components is monitored so that a developing fault can be detected and appropriate action 

taken. This allows maintenance to be scheduled before the impact on the system has become too large, 

resulting in lower downtimes and lower cost of energy (CoE) [2]. 

Condition monitoring (CM) techniques such as vibration and strain measurement require expensive 

sensors that are often impractical in the high-torque applications of wind turbines [3]. Using readily 

available signals from other areas of the turbine could prove an inexpensive alternative CM approach. 

The power converter could provide this information for CM applications; the converter should 

respond to any disturbances and therefore its signals should show the drive train response. For 

example, the quadrature-axis component of the machine side converter (MSC) current signal (Iq) 

controls the real power flow and contains torsional information from the drive train. Monitoring Iq 

could provide useful information about torsional loads on components that could be used for early 

fault detection without extra sensors. 

This investigation focuses on whether power converter signals can be used for CM with a focus on 

two potential applications: 

1. Gear tooth failure detection. 

2. Mechanical load estimation from damaging gusts. 
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2.  Approach 
To carry this work out a drive train model was required. The model developed at Durham in Simulink 

[4] was used. It is a drivetrain model of a fully rated, direct-drive 2MW permanent magnet 

synchronous generator (PMSG) wind turbine with two voltage sources connected to ground simulating 

the DC link. To make this model suitable for this study the following modifications were made: 

1. A full grid-side converter (GSC) was added for a more realistic converter model. 

2. A gearbox was added. 

3. A gearbox fault model was used to provide fault conditions. 

4. A gust model was added to provide data for load prediction. 

A schematic of the final model is shown in figure 1. This section outlines how these aspects were 

modelled. Modifications to the PMSG and MSC as a result of including a gearbox are also detailed. 

Figure 1. Schematic of the 2MW geared PMSG wind energy conversion system. MPPT stands for 

maximum power point tracking. 

2.1.  Grid-Side Converter 
The main objective of the GSC is to control power flow between converter and grid to maintain a 

constant DC link voltage regardless of the power input from the MSC (figure 1). In this configuration 

the GSC acts as an inverter and the MSC acts as a rectifier. The GSC was modelled as a 2-level 

insulated-gate bipolar transistor (IGBT)/diode pair active inverter. In the model the ‘Universal Bridge’ 

block from the Simulink library was used with the power electronic device set to ‘IGBT/Diodes’. It is 

controlled using the ‘PWM Generator (2 level)’ block that takes the voltage from the grid side 

controller as the modulating input signal. The DC-link voltage is 1150VDC. The grid is represented as 

ground connected to a three phase programmable voltage source connected to the GSC via inductors. 

To control the GSC, vector control was chosen as it is able to respond to transient events more 

robustly than load angle control [5]. Figure 2 outlines the control schematic for the GSC. Id is the 

direct-axis current, Vd is the direct-axis voltage, ω is the grid frequency (rad/s), L is the grid 

inductance, VDC_link is the DC-link voltage, Vq is the quadrature-axis voltage, Vd,r is the converter 

reference Vd, Vq,r is the converter reference Vq, and V0 is the 0-component voltage. To convert between 

3-phase sinusoidal and direct-quadrature-zero (dq0) reference frames the Park and inverse Park 

transforms were used. 

2.2.  Gearbox Model 
The gearbox is connected to the hub via the low-speed shaft and to the generator via the high-speed 

shaft. It increases the speed of the incoming turbine speed to the desired generator speed while 

reducing the torque by a gear ratio NGB. The dynamic interactions of the rotor, gearbox and generator 

WindEurope Summit 2016 IOP Publishing
Journal of Physics: Conference Series 749 (2016) 012018 doi:10.1088/1742-6596/749/1/012018

2



 

 

 

 

 

 

were modelled as a 3-mass model. Higher order models were considered, however no data was found 

and the 3-mass model represents the dynamic interactions of the rotor, gearbox and generator 

adequately for this project. The 3-mass model is shown in figure 3. JR is the rotor moment of inertia, 

JGB is the gearbox moment of inertia, Jm1,2 are the equivalent moments of inertia for the low and high 

speed gear sections respectively, Tm1,2 are the equivalent mechanical torques for the low and high 

shafts respectively and Jg is the generator moment of inertia. 

  

Figure 2. Vector control scheme for the GSC. Figure 3. Schematic of the 3-mass model 

dynamics. 

 

The first mass in the rotor, the second mass is the gearbox and the third mass is the generator. The 

model uses the principles of a mass-spring-damper system where each mass has inertia J and each shaft 

a stiffness K and viscous damping B. The second mass (gearbox) is divided into two parts that are 

related through NGB to represent the difference in speeds of each gear. As such the resulting Tm1,2 and 

rotational speeds of the various components (ω) can be represented using equations (1-6). 

 m1 1 r m1 1 r m1( ) ( )dT B K tω ω ω ω= − + −∫  (1) 

 ( ) ( )m2 2 m2 g 2 m2 g dT B K tω ω ω ω= − + −∫  (2) 
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Where B1,2 are the viscous damping of the low and high-speed shaft respectively, K1,2 are the shaft 

stiffnesses of the low and high-speed shafts respectively, ωr is the rotational speed of the rotor, ωm1,2 are 

the rotational speeds of the low and high-speed gear components respectively, ωg is the generator 

rotational speed. Tr is the rotor torque, Tg is the generator torque, and Te is the electromechanical torque. 

The torque and speed across the rotor and generator are related through the gearbox ratio, NGB using 

equation (7). 

,r 

,r 
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Due to the new torque and speed in the generator from [4], changes of the PMSG were made to 

accommodate the current and voltage requirements. To keep the current and voltage outputs the same 

equations (8) and (9) were used. The number of poles was reduced to 4 because the generator has a 

rotational speed of 1500rpm. The flux density was changed to 1.611Vs and the armature inductance was 

changed to 0.4mH. 

 
m2

q

4

3

T
I

pϕ
=  (8) 

 d d, q q smV L I I Rω= −  (9) 

p is the number of generator poles, φ is the generator flux linkage, Vd,m is the MSC direct-axis 

voltage, Ld is the direct-axis generator inductance, and Rs is the stator resistance. The data for the 3-mass 

model has been taken from research papers and is given in Appendix B.  

2.3.  Gearbox Fault Model 
The most severe gearbox failure modes that arise from extreme wind conditions have been identified as 

fretting corrosion and high cycle bending fatigue [6]. Fretting corrosion is the deterioration of 

contacting gear tooth surfaces as a result of vibratory motion between teeth and is this study’s focus.  

The gear friction coefficient varies according to three different types of surface structure: adhesion, 

unevenness and wear [7]. Friction losses in the gears are part of the normal force exerted by each gear at 

the point of contact FN as a friction factor µ . Due to difficulties involved in the estimation of the µ with 

lubrication it is often assumed constant [8] and was not used in this project due to a lack of relevant 

experimental data in the literature. As gears are well lubricated this assumption was deemed 

satisfactory. 

Instead, the gear wear impact on stiffness was considered. The effect of tooth wear on the mechanics 

of the system has previously been examined and it was found that gear tooth wear causes a reduction in 

the stiffness of the gear. It was found that it can be modelled as a rectangular pulse wave or a half sine 

function. The half sine wave function is used in detailed gearbox models that include the gear meshing 

process in their calculations [9]. For this model the rectangular pulse function was chosen as it 

represents the fault accurately for the purpose of this investigation. 

The reduction of the gear tooth stiffness can be calculated according to equation (10). 

 wear g wK K l A=  (10) 

 Where Kwear is the wear stiffness, Kg is the hertz contact stiffness, lw is the wear length and A is the 

amplitude of wear. 

 Typical values of lw are between 1 and 2mm and A typically has a value between 0 and 1 [9]. The 

contact stiffness with a wear fault present, Kg,wear, is given as the difference between the non-faulty gear 

stiffness and the wear stiffness as in equation (11) [9]. 

 g,wear g wearK K K= −  (11) 

 The relationship between the contact stiffness of the gears and the stiffness of the shaft can be 

modelled as springs connected in series. The total stiffness KTotal is calculated from Kg and the shaft 

stiffness KS as in equation (12). 

 
Total

g s

1

1 1
K

K K

=
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(12) 
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The effect of tooth wear in the gearbox was modelled as a reduction in the total stiffness every time 

there is contact with a worn gear tooth as shown in figure 4. The total stiffness is applied across the 

shaft in the model.  

Figure 4. The stiffness relationship in a worn gear. 

 

Other faults such as gear cracks have been modelled using a periodic cosine based variation in shaft 

stiffness given in (13) where Kcrack is the reduction in shaft stiffness due to the crack that can be 

calculated using finite element analysis [9, 10]. The underlying calculations for a crack fault and a wear 

fault are very similar as they both rely on a periodic reduction in the shaft stiffness due to a fault. 

 
( )

s crack

1 cos

2

t
K K

ω−
=  (13) 

Gearbox faults are often modelled as a periodic variation in tooth stiffness to indicate the presence of 

a fault. As a widely used, well-established method of modelling faults and experimental data available, 

it was chosen in this project. 

A typical gearbox in a wind turbine has 3-stages with a planetary gearbox at the first stage, coupled 

to two parallel gearboxes at the second and third stage [11]. Due to the speed dependency of the gear 

fault model, faults can be introduced into any of the gear stages. Appendix A gives a summary of the 

gear ratios and output speeds corresponding to the individual stages. 

2.4.  Gust Model 
Existing gust models rely on real wind data to model the amplitude, duration and gust shape 

introduced along with a running average wind speed [12, 13]. These wind gust profile characteristics 

can be extracted and applied using square or cosine shaped wind profiles that have a gust amplitude, 

duration and frequency. The maximum gust speed (UG,max) in a given time period is calculated from the 

gust factor G(t) in equation (14). An expression for the gust factor is given in equation (15) [14]. 

 ( )G,max WU G t U=  (14) 

 ( ) u e
1 0.42 log

3600

Gt
G t I


= +


 
 

 (15) 

Where Uw is the mean wind speed, Iu is the longitudinal turbulence intensity, and tG is the gust 

duration. 

The International Electrotechnical Commission (IEC) has divided the value for turbulence intensity 

into three categories - higher, medium and lower turbulence characteristics with values of 0.16, 0.14 and 

0.12 respectively [15]. The underlying square wave gust characteristic was used as the basis for all gust 

analysis. 

 For the load prediction model gust, 10 gust categories were defined, each representing a reduction in 

the gust wind speed (table 1).  
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Table 1. Gust category assignment. 

Gust Category UG Gust Category UG 

1 (UG+UW) + UW 6 [(UG + UW)/2.25] + UW 

2 [(UG + UW)/1.25] + UW 7 [(UG + UW)/2.5] + UW 

3 [(UG + UW)/1.5] + UW 8 [(UG + UW)/3] + UW 

4 [(UG + UW)/1.75] + UW 9 [(UG + UW)/4] + UW 

5 [(UG + UW)/2] + UW 10 [(UG + UW)/6] + UW 

3.  Results 
The section presents and discusses the results of gearbox fault detection using converter signals (section 

3.1), and estimating turbine drive train loads from gusts using converter signals (section 3.2). 

3.1.  Gearbox Fault Detection 
Gearbox wear faults were introduced using the method outlined in section 2.3. The first fault was 

introduced as a wear fault with wear amplitude 0.5 and wear length 1mm present on every other tooth, 

giving a fault frequency of 1.72Hz. The incoming wind speed was constant at 7m/s. The parameters 

used to introduce the first fault in the second gearbox stage of the gearbox are detailed in Appendix B.  

By taking the Fast Fourier Transform (FFT) of the MSC Iq signal the frequency spectrum was 

computed to identify differences between the ‘healthy’ (no fault) and faulty spectrum. Figure 5 shows 

the frequency response of the MSC Iq signal in its ‘healthy’ and faulty state as well as the amplitude 

difference between the healthy and faulty state. It can be seen that there is no clear difference in the 

spectrum at the fault frequency. There is a small difference at 2Hz, where both the healthy and the faulty 

spectrum show a spike due to control errors.  

Figure 5. MSC Iq frequency response 
 

It was investigated why the fault does not appear in the MSC Iq frequency spectrum by looking at the 

frequency spectrum of the relevant torque components. The torque across the high speed shaft is an 

input to the PMSG and is used to determine the MSC Iq and is result of the addition of the torque due to 

stiffness (TK) and the torque due to damping (TB). Figure 6 shows the frequency spectrum of each of 

these individual torque signals in their ‘healthy’ state and their faulty state. It can be seen that the fault is 

visible in the frequency spectrum of TK and TB (figure 6), yet is no longer visible in the resulting total 

torque spectrum (figure 5).  

To understand the impact of the damping and stiffness components on the fault frequency response, 

the time sequence of TK and TB was monitored with the fault present (figure 7). The time sequences 

showed that the oscillatory motion of TK due to the fault is counteracted by an opposite oscillatory 

motion from TB removing the oscillation due to the fault from the frequency spectrum. 
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Figure 6. Frequency spectrum of mechanical torque components. 

Figure 7. Temporal spectrum of mechanical torque components. 

 

The amplitude of the torque due to damping counteracts the amplitude of the torque due to stiffness 

exactly, resulting in a critically damped system. The gearbox was modelled analogous to a mass-spring-

damper system. In this system the role of the damper is to reduce or prevent oscillations. The fault 

amplitude was varied in the full range of 0 to 1 and the wear length was varied in the full range of 1mm 

to 2mm and the input speed was varied. However in each case the system remained critically damped, 

resulting in the fault not appearing in the MSC signals. 

In a real gearbox the torque due to damping and torque due to stiffness cannot be measured 

separately as they have been in this model. In a real gearbox the system parameters might not be as 

perfectly balanced as in this modelled system and the damping might not have the same effect as in this 

model. Thus there is a possibility that faults can be detected in the MSC Iq signal of a real gearbox 

system where the components and parameters are not as balanced as in this drive train model. 

3.2.  Load prediction on mechanical components using MSC signals 
The MSC converter signal spectrum changes with the incoming wind speed and wind pattern. Wind 

gusts at varying frequencies appear clearly on the spectrum and can be monitored using the MSC 

signals. Figure 8 shows the variation of the frequency spectrum as the gust frequency of the incoming 

wind is varied at a mean wind speed of 7.5 m/s using the maximum gust speed.  

Simulations were done at different speeds and constant gust frequency of 3Hz. A relationship 

between the MSC Iq amplitude and the difference in rotor torque magnitude was derived for each gust 

category using simulation results as data points. The result for the first, second and third gust categories 

are shown in Figure 9 with equations (16-18) representing their relationship respectively. �Tr is the 

change in mechanical load on the rotor in kNm. 
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Figure 8. MSC Iq frequency spectrum for 

different gust frequencies. 

Figure 9. �Tr vs MSC Iq amplitude for 

different gust categories. 

 

 GC 1: 
0.6238

r q137.7T I∆ =  (16) 

 GC 2: 
0.6206

r q130.21T I∆ =  (17) 

 GC 3: 
0.6176

r q123.92T I∆ =  (18) 

With this information, a load prediction model can be constructed. The proposed model works on 

the basis that the wind speed and MSC signal amplitudes can be measured. A flowchart of its 

operating principle is illustrated in Figure 10. The wind is monitored and depending on the mean wind 

speed and gust magnitude it can be assigned a gust category. Each gust category has an equation 

relating the change in torque and the MSC current amplitude for an assigned frequency range. 

Figure 10. Flowchart of the load prediction model. 

 

Depending on the gust category and gust frequency, an equation is selected from which �Tr can be 

calculated. The frequency ranges become smaller as the gust frequency decreases because the change 

in Iq amplitude increases. Severe load changes can then be counted to estimate the mechanical fatigue. 

In order to verify the functionality of this method a variety of ideal category 1 gusts with different 

mean wind speeds were inputted into the model. The MSC Iq FFT amplitude was measured and the 

expected load on the rotor was calculated according to equation (�Tr,est) (16). �Tr,est was compared to 

the measured torque from the simulation (�Tr,sim) using the percentage error. 

The results are summarised in table 2. The percentage error between the measured and the 

calculated error is very small, below 1%. This shows that the model is able to predict the load on the 

mechanical components in the wind turbine drive train through MSC signal measurements adequately. 

The model was tested using real wind data from the anemometer on a 1.5MW variable speed wind 

turbine in order to investigate the accuracy of the model using a real, non-ideal wind characteristic. 

The data was identified as GC 10 and frequency 0.29Hz. The equation relating �Tr,est and MSC Iq in 

this case is given by (19). Table 2 gives a summary of the results.  
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Table 2. Model Verification and response to real wind input. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
0.7445

r,est q15.739T I∆ =  (19) 

The percentage error for the real wind is higher than for the ideal wind. This is expected as the real 

wind gusts have a larger variation in duration and magnitude. The frequency of the gusts in the real 

wind characteristic is not as clear as in the ideal characteristic. The frequency categories allow for 

some variation that increases the percentage error. For a mean wind speed of 8.5m/s with gusts of 

frequency 0.29Hz the difference between the maximum (GC 1) and minimum (GC 10) change in rotor 

torque is 555910Nm. The difference between the calculated and measured rotor torque from Table 3 is 

5881.9Nm, which is 100 times smaller than the difference between GC1 and GC10. This indicates that 

the model has the ability to estimate the change in load using real wind characteristics well.  

4.   Conclusion 

CM of wind turbine components allows appropriate action to be taken to minimise the impact of 

developing faults but currently requires expensive sensors and data acquisition devices. This paper 

investigates whether converter signals, which are already monitored by turbine controllers, can be 

used for CM. 

A drive train model was modified to include a gearbox, GSC and gearbox fault model to determine 

whether gearbox faults could be detected in the converter signals. Gusts were also modelled to 

determine if drive train mechanical loading could be predicted using converter signals. The 

conclusions from this study are: 

• Gear wear cannot be detected in the MSC signals due to the model damping effects. However, 

physical testing should be carried out to explore the impact of non-ideal dynamics. 

• A model using MSC signals successfully predicted the load changes in the turbine with a 

percentage error < 1% under ideal wind conditions, and <6% for a real wind speed case. 

Further investigations into the magnitude of load changes that cause mechanical component 

damage could lead to the application of this accurate MSC-based load prediction model to prevent 

gearbox faults through turbine shutdown during damaging wind conditions. 

Appendices 

Appendix A. 3-stage gearbox gear ratios. 

 

 

 

UW (m/s) MSC Iq (A) �Tr,est (Nm) �Tr,sim (Nm) % Error 

  Verification (GC 1)   

5.5 4.536 353636.5 350370 0.92 

6.2 6.648 448868.5 445450 0.76 

7 9.84 573264.2 568160 0.89 

8.2 16.344 786715 780330 0.81 

  Real wind input (GC 10)   

8.4 11.82 98978.5 104860 5.9 

 
Stage 1 Stage 2 Stage 3 

Gear type Planetary Parallel Parallel 

Gear ratio 1:16.667 1:2 1:2 

Output speed 375rpm 750rpm 1500rpm 
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Appendix B. Data for 3 mass model and gear faults. 
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Parameter Value Ref Parameter Value Ref 

Jr 2.92x10
6
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2
 [16] K2 2.29x10

8
 Nm/rad [18] 

Jg 200 kgm
2
 [17] Kg 

3.715x10
6
 

Nm/rad 
[17] 

JGB 190 kgm
2
 [17] Kwear 1857.5 Nm/rad (10) 

B1 6.72 Nms/rad [4] Kg,wear 3713143Nm/rad (11) 

B2 6.72 Nms/rad [4] KTotal 3655585 Nm/rad (12) 

K1 4.00x10
7
 Nm/rad [16] KTotal,wear 1842070 Nm/rad (12) 
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Abstract: Improving the availability of wind turbines is critical for minimising the cost of wind energy, especially offshore. The
development of reliable and cost-effective gearbox condition monitoring systems (CMSs) is of concern to the wind industry,
because the gearbox downtime has a significant effect on the wind turbine availabilities. Timely detection and diagnosis of
developing gear defects is essential for minimising an unplanned downtime. One of the main limitations of most current
CMSs is the time consuming and costly manual handling of large amounts of monitoring data, therefore automated
algorithms would be welcome. This study presents a fault detection algorithm for incorporation into a commercial CMS for
automatic gear fault detection and diagnosis. Based on the experimental evidence from the Durham Condition Monitoring
Test Rig, a gear condition indicator was proposed to evaluate the gear damage during non-stationary load and speed operating
conditions. The performance of the proposed technique was then successfully tested on signals from a full-size wind turbine
gearbox that had sustained gear damage, and had been studied in a National Renewable Energy Laboratory’s (NREL)
programme. The results show that the proposed technique proves efficient and reliable for detecting gear damage. Once
implemented into the wind turbine CMSs, this algorithm can automate the data interpretation, thus reducing the quantity of
the information that the wind turbine operators must handle.

1 Introduction

The European Wind Energy Association estimates that by
2020, 230 GW of wind capacity will be installed in Europe
and 735 GW will be installed by 2050 [1]. These targets
cannot be met without a large-scale offshore wind
development in increasingly remote and hostile locations. In
these environments, installation is more difficult and
expensive and access to the wind farms for maintenance is
also limited. Owing to the reduced site accessibility and the
high cost of specialist personnel and equipment involved,
the offshore operation and maintenance (O&M) costs can be
quantified as three to five times higher than those on land
[2]. O&M costs are estimated to account for up to 30% of
the energy generation costs, with a considerable part, about
70%, caused by unexpected failures [3]. These high figures
make the energy produced less competitive compared with
the conventional sources and emphasise the need for
optimising the O&M strategy for the offshore wind farms to
reduce the turbine downtime and increase the availability.
Achieving high wind turbines availability is paramount to
providing affordable and cost-effective wind energy. The
reactive maintenance strategies that are often employed
onshore are largely impractical offshore because of
difficulties in accessing wind farms in harsher environmental
conditions. The adoption of a condition-based maintenance
(CBM) can contribute significantly to minimising the
offshore O&M costs by lowering the number of inspection

visits and corrective maintenance actions [4]. This
maintenance approach involves the repair or the replacement
of parts based on their actual condition and the individual
operating history of the particular machine, rather than on a
schedule based on the predicted operating conditions of the
average machine [5]. The development of reliable and
cost-effective condition monitoring techniques, with
automatic damage detection and diagnosis of the wind
turbine components, plays a pivotal role in establishing
technically and economically viable CBM strategies,
especially for the unattended wind turbines located in
remote and difficult-to-access locations. Autonomous
on-line condition monitoring systems (CMSs) allow the
early warning of mechanical and electrical defects to prevent
major component failures. Faults can be detected while the
defective component is still operational and thus necessary
repair actions can be planned in time.

2 Wind turbine gearbox condition monitoring

Among the various wind turbine components, the gearbox
has been shown to cause the longest downtime [6] and is
the most costly to maintain throughout a turbine’s
20-year-plus design life [7]. Gearbox faults, with high
replacement costs, complex repair procedures and revenue
loss caused by a long downtime, are widely considered a
leading issue for the wind turbine drive train condition
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monitoring (CM) [5, 8, 9]. Common wind turbine gearbox
failure modes are bearing faults and gear tooth damage
[10]. The stochastically varying torque on the gearbox is
considered to be a major root cause for bearing and gear
wear, driving gearbox failure modes and affecting gearbox
life. Typical gear faults include pitting, scuffing, chipping
and more seriously, cracks [11]. In a recent study, Gray and
Watson [12] have shown that the gearbox alone could be
responsible for up to one-third of all the lost onshore wind
turbine availability. This problem is exacerbated offshore
where the harsh weather and sea conditions could prevent
maintenance or component replacement for long periods of
time. Few reliability data are still publicly available for the
offshore wind turbines. However, 3 years of available data
from the Egmond and Zee wind farm in the Netherlands
show how the gearbox downtime caused 55% of the total
wind farm downtime [13].
The main wind turbine operator concerns about gearbox

reliability, particularly offshore, are:

† High replacement costs following a failure.
† Complex repair procedures that incur high logistics costs
and require favourable weather conditions [10].
† High revenue losses caused by a long downtime between
the failures and repair completion.

Consequently, the gearbox has become an essential subject
for the current commercial wind turbine CMS. Timely and
reliable detection and diagnosis of the developing gear
defects within a gearbox is an essential part of minimising
an unplanned downtime of the wind turbines. The wind
turbine CMS application was requested by insurance
companies in Europe in the late 1990s, following a large
number of claims triggered by catastrophic gearbox failures
[14], although these root causes have largely been
eliminated by changes in the wind turbine design. Today, a
number of commercial wind turbine CMSs are available to
the wind industry and they are largely based upon the
experience of monitoring the conventional rotating
machines. A cost-benefit analysis has shown that the
lifetime savings derived from an early warning and the
avoidance of the impending failures of the critical wind
turbine components would more than offset the lifetime
cost of a CM system [11].
A survey conducted by the UK Supergen Wind Energy

Technologies Consortium [15] shows that the most popular
CM approach for the gearbox is vibration monitoring using
traditional Fourier transform analysis of the high frequency
data to detect the fault-specific frequencies. However,
applying the vibration-based CM to the wind turbines
presents a few unique challenges. The wind turbines are
variable load and speed systems operating under highly
dynamic conditions, usually remote from technical support.
This results in CM signals that are dependent not only on a
component integrity but also on the operating conditions.
One limitation of the conventional fast Fourier transform
(FFT) analysis is its inability to handle non-stationary
waveform signals that may not yield accurate and clear
gearbox features. To acquire the directly comparable data
and to allow the spectra to be recorded in apparently
stationary conditions, a number of commercial CMSs can be
configured to collect the vibration spectra within limited,
pre-defined speed and power ranges [15]. To overcome the
problems of the conventional FFT-based techniques and find
improved solutions for the wind turbine CM, a number of
advanced signal processing techniques, including wavelet

transforms, time–frequency analysis and artificial intelligence
techniques, have been also researched recently [8, 16–18].
However, most new techniques are unsuitable for an online
CM use, because they are computing intensive, and have not
been demonstrated yet in the operating wind turbines.
One major limitation of the current commercially available

CMSs is that very few operators make use of the alarm and the
monitoring information available to manage their maintenance
because of the volume and the complexity of the data. In
particular, the frequent false alarms and the costly specialist
knowledge, required for a manual interpretation of the
complex vibration data, have discouraged the wind turbine
operators from making a wider use of the CMSs. This
happens despite the fact that these systems are fitted to the
majority of the large wind turbines (>1.5 MW) in Europe
[18]. Moreover, with the growth of the wind turbine
population, especially offshore, a manual examination and
comparison of the CM data will be impractical unless a
simplified monitoring process is introduced.
Current efforts in the wind CM industry are aimed at

automating the data interpretation and improving the
accuracy and the reliability of the diagnostic decisions,
especially in the light of impending large-scale, offshore
wind farm generation. This paper attempts to target this
research area by experimentally defining an algorithm that
could be incorporated into the current CMSs for an
automatic gear fault detection and diagnosis. This algorithm
could reduce the quantity of the information that the wind
turbine operators must handle, providing improved
detection and timely decision-making capabilities.
The paper initially investigates the effect of the gear tooth

fault severity on the gearbox vibration signature by using the
experimental results obtained from the 30 kW wind turbine
Condition Monitoring Test Rig (WTCMTR) at Durham
University. A frequency tracking algorithm that
automatically detects and diagnoses the gear tooth faults is
proposed and discussed. The performance of the proposed
technique is then tested by using 750 kW gearbox datasets
from the National Renewable Energy Laboratory’s (NREL)
wind turbine Gearbox Condition Monitoring Round Robin
project [19]. These vibration signals were collected from a
real wind turbine gearbox that had sustained gear damage
during its field test.

3 Experimental methodology

3.1 Durham WTCMTR

Experimental research was performed on a 30 kWWTCMTR
at Durham University, shown in Fig. 1, which has been
designed to act as a model for a wind turbine drive train.
The rig features a 54 kW DC motor driving a 3-phase,
4-pole, 30 kW wound rotor induction generator (WRIG)
through a two-stage helical-gear parallel shaft gearbox. The
first low-speed (LS) stage teeth 66/13 and the second
high-speed (HS) stage 57/58 provide an overall gear ratio of
5:1 (4.9894:1). A complete description of the test rig and
instrumentation can be found in [20].
The WRIG has external variable resistors connected to the

rotor circuit that allowed a super-synchronous generator speed
variation of 100 rev/min, from 1500 to 1600 rev/min, with a
corresponding maximum power output of 3.6 kW. The DC
motor was driven at constant and wind-like variable speed
conditions to cover the allowed speed range. Variable speed
machine testing was performed by using the driving data
derived from a 2 MW wind turbine model [20]. Vibration
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data from a single axis, vertically mounted accelerometer
located on the gearbox HSS were processed by using an
SKF WindCon unit 3.0, a commercial CMS producing FFT
spectra, as currently used on the full size operational wind
turbines. The sensor used was a piezoelectric accelerometer
with integral electronics and a sensitivity of 500 mV/g.

3.2 Experimental procedure and data observation

In a geared transmission system, the main vibration source is
the meshing action of the gears. The geometry of the gear
profile has a crucial effect on the vibration behaviour. In
practice, as the teeth deform under load, a meshing error is
introduced even when the tooth profiles are perfect. In
addition, there are geometric deviations from the ideal
profiles, because of the gear manufacturing errors [16]. The
most important components in the gear vibration spectra are
the tooth meshing frequencies and their harmonics, together
with the sidebands (SBs) caused by the modulation
phenomena because of mean geometric errors on the tooth
profiles, machining errors and wear. The gear meshing
frequency is defined as the product of the number of the
teeth on the gear and its turning speed. For the gearboxes in
good condition, the SB level generally remains constant with
time. Therefore an increment in the number and the
amplitude of such SBs may indicate a fault condition [17].
Local tooth damage produces short-duration effects that add
amplitude and frequency modulation effects to the meshing
vibration, and in turn generate a higher level of SBs around
the mesh harmonics. Moreover, the spacing of the SBs is
related to their source and thus contains important diagnostic
information [21]. In particular, the localised modulation
effect takes place only during the engagement of the faulted
teeth, but is repeated once in each revolution of the gear. As
a consequence, the spectrum presents a large number of SBs
of the tooth meshing frequency and its harmonics spaced by
the faulted gear rotational frequency. Typically, the more
damage that occurs, the more energy there is in the SBs [22].
In particular, the previous literature on the vibration analysis
has shown that monitoring the second harmonic of the gear
mesh and its SBs allows early detection of gear wear [23].

Experiments were conducted to investigate the progression
of a tooth defect on a high-speed shaft (HSS) pinion, which
was introduced into the WTCMTR at variable speed and
generator load. The behaviour of a healthy pinion and of
four faults of increasing severity were investigated by
introducing progressive damage to the leading contact edge
of one tooth of the gearbox pinion. These are called seeded
fault tests. Fig. 2a shows the healthy pinion, Figs. 2b–d
show the early stages of tooth wear, while Fig. 2e depicts
the entire tooth missing. The vibration data from the
accelerometer were processed by WindCon assuming a
fixed sampling frequency and producing the FFT spectra
with an overall frequency range of 5 kHz in the 1500–1600
rev/min HSS active range. The accelerometer measurement
point in WindCon has been configured to provide the
vibration spectra which refer to a measurement time
window of 1.28 s. The produced spectra have 6400
resolution lines for a 5 kHz bandwidth with a resulting
frequency resolution of 0.78125 Hz/line. WindCon’s
built-in diagnostic tools have been used to assist with the
analysis of the spectra by tracking the machine
component-specific, speed-dependent fault frequencies, their
harmonics and SBs.
Normalised order spectra (X ) were used to facilitate the

comparison of the spectra and to identify the effect of a
faulty tooth on the 30 kW gearbox vibration signature. A
local gear defect, such as a cracked tooth, generates a
disturbance in each revolution. Basically, a spectral order is
introduced as a non-dimensional frequency parameter. If the
frequency axis is normalised to the shaft rotation frequency
any cyclic event synchronised with the shaft rotation will
produce a spectral component at a fixed position even under
the variable speed conditions. The advantage of this approach
is that it is easier to focus on a specific cyclic mechanism.
During the tests performed on the Durham WTCMTR the
HSS speed signal was recorded simultaneously with the
vibration data by the WindCon software. WindCon’s
frequency unit has a built-in tool allowing the operator to
switch easily and automatically between Hz or order
frequency units. This is done by dividing the FFT frequency
in Hz by the HSS rotational speed, fHSS, at which the

Fig. 1 Durham WTCMTR:

a Schematic diagram
b Main components, instrumentation and control systems [20]
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spectrum was collected. The FFT spectra produced were
compared under similar machine operating conditions. The
measured data showed that the presence of an HSS pinion
faulty tooth results in clear and prominent fHSS SB
components of the HS stage meshing frequency second
harmonic, 2xfmesh,HS, vibration signal. For this reason,
monitoring the second harmonic narrowband window has
been assumed as the most reliable and consistent indicator
of the HSS pinion fault [24]. Fig. 3 shows the zoom-in view
of the measured HSS order vibration spectra around the
2xfmesh,HS second harmonic, given by

2xfmesh,HS = 116X (1)

for the healthy, early stages of tooth wear and the missing tooth
conditions at a typical operating speed of 1560 rev/min and
51% of the maximum generator output. The spectra show an
increase in the signal harmonic content as a result of the

abnormal gear-set behaviour caused by the progressive
damage introduced to the gearbox HSS pinion. The presence
of the faulty pinion can be clearly seen in the 2xfmesh,HS

harmonic which is heavily modulated by the HSS speed,
fHSS, given by

fHSS = 1X (2)

Ten SBs of the 2xfmesh,HS harmonic, SBi, calculated as

SBi = 2xfmesh,HS + i
( )

X (3)

where i =±1, ±2, ±3, ±4, ±5, are visible in the spectra. The
severity level of the tooth damage affects the SB amplitudes.
Furthermore, the gear mesh centre harmonic, surrounded by
the SBs, denotes which gear mesh the damaged gear is
passing through. These two pieces of information indicate

Fig. 3 30 kW gearbox FFT vibration spectra during the seeded fault tests in the [110–120] X HSS order frequency bandwidth

Fig. 2 HSS pinion conditions investigated during the seeded fault tests

a Healthy
Early stage of tooth wear
b 3-mm × 2-mm chip
c 5-mm × 5-mm chip
d 7-mm × 5-mm chip
e Missing tooth
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that the damaged component is passing through the HS stage
gear mesh and is mounted on the HSS shaft.

3.3 Algorithm definition

The seeded fault tests conducted in this paper show that the
presence of the meshing frequency harmonic SBs and their
amplitudes could be valuable for detecting and diagnosing
the gear defects. However, a manual analysis of the spectra,
needed to compare the changes in the amplitudes for
different conditions, requires significant time-consuming
work because of the great number of frequency bands to be
monitored. This calls for intelligent monitoring strategies
that are able to detect the faulty signal in an automatic way.
The suggestion is to track the overall power of the spectra
associated with the 2xfmesh,HS SB frequency window. Based
on the experimental evidence, a gear condition indicator,
the SB power factor (SBPF) algorithm, has been proposed
to evaluate the gear damage during the wind turbine
non-stationary load and speed operating conditions [24].
The SBPF algorithm sums the power spectrum amplitudes
of the HS stage meshing frequency second harmonic and its
first 5 SB peaks on each side. It has been calculated by using

SBPF = PSA 2xfmesh,HS

( )+
∑+5

i=−5

PSA(SBi) (4)

where PSA(2xfmesh,HS) and PSA(SBi), with i = ±1, ±2, ±3, ±4,
±5, being the power spectrum amplitudes of the 2xfmesh,HS

harmonic and of its first 5 SBs spaced at the HSS rotational
speed, respectively, shown in Fig. 4. The proposed
algorithm facilitates the monitoring analysis, reducing each
FFT spectrum to only one parameter for each data
acquisition and avoiding a time consuming manual spectra
comparison.

3.4 Results

The influence of the fault severity and the variable load
operating conditions on the SBPF values has been

investigated by performing variable speed tests on the
WTCMTR at a load of up to 3.6 kW. The resulting SBPF
values are shown in Fig. 5 against the load, expressed as a
percentage of the maximum generator output in this
condition, for the HSS pinion healthy conditions, for the
early stages of tooth wearing and for a missing tooth. No
frequency averaging has been performed on the data before
the extraction of the SBPF values.
The results show that the SBPF magnitude is proportional

to the magnitude of the gear fault level. This is because as
damage develops on a gear tooth passing through the gear
mesh, the SBs increase in amplitude, resulting in the larger
SBPF values. The trend of the obtained SBPF values can
be fitted by an exponential curve, relating vibration spectra
power increase with machine load. In the full range of the
load investigated, the SBPF values for the missing tooth
case are higher than both the healthy and the early tooth
wear cases, indicating a clear fault detection. The proposed
algorithm works successfully even at the early stages of the
tooth failure, showing a higher effectiveness at the
percentage loads above 20%.

4 Algorithm validation

4.1 NREL wind turbine Gearbox Condition
Monitoring Round Robin project

To validate the performance and the reliability of the
proposed SBPF algorithm on a full size gearbox, the
algorithm has been tested on the data from the NREL wind
turbine Gearbox Condition Monitoring Round Robin
project [19]. Vibration data collected from two identical
750 kW wind turbine gearboxes, tested on the NREL
dynamometer test stand in Fig. 6, were used in this paper.
A complete description of the NREL test-bed and
instrumentation can be found in [25]. The gearboxes have
an overall ratio of 1:81.491 and feature one low-speed (LS)
planetary stage and two parallel stages, an intermediate-
speed (IS) and HS, respectively. Table 1 provides the
details of the NREL gearbox nomenclature for the internal
elements and the gear teeth number.

Fig. 4 Typical FFT power spectrum around the 2xfmesh,HS harmonic in the case of a faulty HSS pinion
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Baseline data were collected on the dynamometer test
stand from a healthy test gearbox, which had no
operational experience. Data then were collected from the
dynamometer retest of an identical gearbox after its
internal components had sustained damage from its field
test. This gearbox first finished a run-in in the NREL
dynamometer and was then sent to a nearby wind farm
for a field test. The test gearbox was installed on a
three-blade, stall-regulated, upwind wind turbine with a
rated power of 750 kW and a rated wind speed of 16 m/s,
respectively. In the field, two oil loss events occurred and
led to some damage to the gears and the bearings inside
the test gearbox. The gearbox was then removed from the
field and retested under controlled conditions in the NREL
test stand. During the retest, various condition monitoring
data were collected, including the measurements of
vibration and oil debris. Once the dynamometer retest was
completed, the gearbox was disassembled and a detailed

failure analysis was conducted [26]. Severe scuffing of the
HS shaft gear set was one of the 12 instances of damage
found during a failure analysis. Fig. 7 shows the damaged
HSS pinion.

4.2 Vibration data analysis

The task of this paper was to validate the SBPF analysis of the
vibration data to detect and diagnose the HSS pinion damage
by using the data collected by two independent
accelerometers, AN6 and AN7, mounted radially on the
gearboxes intermediate-speed shaft (ISS) and HSS,
respectively. Both these sensors were integrated-circuit
piezoelectric-type accelerometers with a sensitivity of 100
mV/g.
The available dataset refers to an HSS speed of 1800 rev/

min and to 50% of the rated power, which is the highest

Fig. 6 NREL dynamometer test stand with a 750 kW gearbox installed

Photo by Lee Jay Fingersh/NREL 16913

Fig. 5 Influence of the fault severity and the variable load operating conditions on the SBPF values during the seeded fault tests
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test load applied to reduce the chances of a catastrophic
gearbox failure. For each accelerometer, it contains:

† For the healthy gearbox: 1 single FFT spectrum collected
by a commercial CMS at 5 kHz for a duration of 1.6 s.
† For the faulty gearbox: 40 kHz raw vibration data collected
continuously for 10 min.

The dataset presented some challenges for deriving an SB
amplitude comparison system baseline. This was overcome
by the windowing data from the faulty gearbox through a
1.6 s time window and then processing the data by using the
built-in FFT algorithm in MATLAB. For each accelerometer,
the resulting 375 FFT spectra have then been consistently
compared against the available healthy spectrum, presenting
the same frequency resolution. Figs. 8a and b show an
example of the zoom-in view of the healthy and the faulty
HSS order vibration spectra around the HS stage meshing
frequency second harmonic, 2xfmesh,HS, given by

2xfmesh,HS = 44X (5)

for the AN6 and the AN7 accelerometer data, respectively.
In both the cases, when comparing the degraded gearbox

with the nominal baseline healthy gearbox, the increase in
the energy content of the 2xfmesh,HS harmonic and its SBs

can be clearly seen. In the faulty spectrum, the HS meshing
frequency second harmonic is heavily modulated by the
HSS rotational speed, fHSS = 1X. The SB spacing indicates
severe damage in the HSS pinion.

4.3 Algorithm implementation

To quantify these observations from the vibration data, SBPF
values were extracted from the baseline spectrum and the 375
degraded gearbox spectra. The results are shown in Figs. 8c
and d for AN6 and AN7, respectively. In both the cases,
the SBPF magnitude is much larger for the degraded
gearbox compared with the baseline gearbox, representing
an average value of 0.021 (gP)2 and 0.013 (gP)2,
respectively. From the SBPF methodology, there is a strong
indication that there is damage on the high-speed shaft
pinion. These results, on a full-size 750 kW gearbox,
provide further credibility to the SBPF algorithm, already
proven on the 30 kW WTCMTR, for a timely detection and
a diagnosis of gear damage.
In this case, the use of the vibration signals collected from

two independent accelerometers located at strategic positions
on the gearbox casing improves the confidence in the SBPF
fault detection and diagnosis capability, eventually reducing
the false alarms. This is particularly interesting when
considering that one issue around the CMS data
interpretation is to rely on a single signal, which could lead
to false alarms from the monitoring process [10].

5 Discussion

Experimental work on the low-power Durham WTCMTR has
allowed the implementation of the repeated seeded-fault
conditions under controlled conditions. The developed
SBPF algorithm allows the assessment of a gear fault
severity by tracking a progressive tooth gear damage during
the variable speed and load operating conditions of the test
rig. The performance of the proposed technique has then
been successfully tested on the signals from a field test of a
full size wind turbine gearbox that has sustained gear damage.
The SBPF detection sensitivity to the tooth damage has

been calculated by determining, for each load condition, the
percentage change of the SBPF value. For each case, the
SBPF detection sensitivity (%SBPF) between the faulty and
the healthy conditions has been defined as

%SBPF = SBPFf − SBPFh
SBPFh

× 100 (6)

where SBPFh and SBPFf are the SBPF values for the healthy
and the faulty cases, respectively. Table 2 summarises the
average SBPF detection sensitivities to the HSS pinion
damage for the 30 kW Durham gearbox and the 750 kW
NREL gearbox datasets.
In the case of the Durham 30 kW gearbox dataset, the

sensitivity analysis shows that the SBPF technique proves
successful in the detection of both the early and the final
stages of the gear tooth damage, with average detection
sensitivities of 100 and 320%, respectively. The influence
of the fault severity on the SBPF detection sensitivity
values is evident; the more damaged the pinion the easier it
is to discriminate the fault.
In the case of the NREL dataset, although the gearbox

damage was more complex than in a typical operational
wind turbine [19] and the dataset provided refers to only

Table 1 NREL 750 kW gearbox nomenclature and teeth
number

Gear element Location Number of
the teeth

Mate
teeth

Ratio

ring gear LS planetary
stage

99 39 —

planet gear LS planetary
stage

39 99 —

sun pinion LS planetary
stage

21 39 5.71

intermediate
gear

IS parallel
stage

82 23 —

intermediate
pinion

IS parallel
stage

23 82 3.57

HS gear HS parallel
stage

88 22 —

HS pinion HS parallel
stage

22 88 4.0

overall ratio: 81.491

Fig. 7 Pinion damage on a 750 kW gearbox HSS

Photo from GEARTECH/NREL 19743
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one speed and load operational condition, the SBPF detection
and diagnostics technique proves successful in the detection
of the HSS pinion damage, with an average detection
sensitivity of 1140 and 1251% for the AN6 ISS radial and
the AN7 HSS radial accelerometers, respectively. Since the
analysed dataset contains multiple gearbox progressed
faults, it is believed that the SBPF diagnostic performance

could be improved when deployed in the field, bearing in
mind the smaller number of the faults usually present
during the early stages of the gearbox fault evolution.
The proposed SBPF algorithm facilitates the monitoring

analysis, reducing each FFT spectrum to only one
parameter for each data acquisition. By automating the
condition monitoring of the gears, the SBPF reduces the
quantity of the vibration information that the wind turbine
operators must handle, providing improved detection and
timely decision-making capabilities. The SBPF can be
monitored over time, trended and compared with one or
more predetermined threshold levels to provide warnings
and alarms to the operators.
The knowledge of the gearbox load is fundamental to apply

effectively the SBPF technique. The current commercially
available CMSs usually provide information on the turbine
load. This will allow the SBPF technique to work in
context with the gearbox load. Otherwise, in case the
turbine load is not available, the operator has to take
the SBPF measurements only when the machine is at its
full load.

Fig. 8 Vibration FFT spectra and the SBPF plots for two accelerometer positions on healthy and faulty identical 750 kW gearboxes

a Accelerometer AN6 ISS Radial, FFT spectrum
b Accelerometer AN7 HSS Radial, FFT spectrum
c Accelerometer AN6 ISS Radial, SBPF plot
d Accelerometer AN7 HSS Radial, SBPF plot

Table 2 Durham (30 kW) and NREL (750 kW) gearbox average
SBPF detection sensitivities

Gearbox HSS pinion
fault severity

Accelerometer
location

Average%
SBPF

Durham – 30 kW
seeded fault
tests

early stages
of tooth wear

HSS vertical 100

missing
tooth

HSS vertical 320

NREL – 750 kW
gear box
datasets

severe
scuffing

AN6 ISS radial 1140

severe
scuffing

AN7 HSS radial 1251
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The SBPF methodology, based on the analysis of the
dynamics of the gears, can easily be scaled to the higher
wind turbine power levels. However, this would probably
imply an increase in the spectral background noise because
of the higher complexity of the wind turbine drive trains
compared with the small-scale WTCMTR.
For the gearbox parallel stages, the SBPF is easily

applicable to the harmonics of each fundamental gear mesh
frequency using both the gear and the pinion SBs, once the
multistage gearbox configuration and the number of the
teeth of each gear element are known. This information
allows for the calculation of the gear damage features, such
as the meshing frequencies, their second harmonic and the
spacing of the SBs because of the gear wear modulation
phenomena for each stage, and the extraction of the
corresponding SBPF values. For the planetary stages, the
analysis of the SB patterns could be more complicated
because of a low mechanical transmissibility from the gear
components and the multiple contact points between each
planet gear meshing and the sun and ring gears.

6 Conclusions

This paper has proposed an experimental sideband algorithm
for an automatic wind turbine gear tooth fault detection and
diagnosis, which has been validated by analysing the
vibration signals from a full size wind turbine gearbox with
the HSS pinion faults. The following specific conclusions
arise:

† The SBPF algorithm proved effective in detecting the
presence of the gear damage introduced into a 30 kW Test
Rig gearbox, that is, damage location, and in identifying the
precise damaged gear, that is, damage diagnosis, with a
detection sensitivity of 100–320%.
† The SBPF successfully allowed the assessment of a gear
fault severity on the test rig by tracking a progressive tooth
damage, from the early stages of development, during the
variable speed and load conditions.
† The experimentally defined SBPF technique has also been
successfully tested against the vibration data from an NREL
750 kW wind turbine gearbox, which had experienced
severe high-speed shaft gear set scuffing, with detection
sensitivities of 1140 and 1251%.
† Confidence in the NREL gearbox results is enhanced by a
strong SBPF detection and diagnosis evidence from two
independent accelerometers.
† The proposed methodology is relatively simple to
implement into a commercial wind turbine CMS for an
automatic gear fault detection and diagnosis.
† The generation of the SBPF trends from the vibration
spectra and the definition of the magnitude thresholds for
the fault severity levels could indicate to a wind turbine
operator when a maintenance action needs to be performed.
† The SBPF can be easily adapted to detect gear damage on
all the wind turbine gearbox parallel stages, while its
applicability to the planetary stages still requires more
investigation.
† Compared with the conventional FFT approach used in the
current commercial vibration-based CMSs, requiring a time
consuming visual spectra analysis, the SBPF approach
enables an automatic detection and diagnosis of the gear
faults with a low risk of false alarms. This will lead to an
increased accuracy of the wind turbine drive-train
vibration-based condition monitoring.
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Abstract: This study presents a new technique for detecting rotor electrical faults in wind turbine doubly-fed induction generators
(DFIGs), controlled by a stator field-oriented vector control scheme. This is a novel method aimed at detecting and identifying
rotor electrical asymmetry faults from within the rotor-side inverter control loop, using the error signal, to provide a future method
of generator condition monitoring with enhanced detection sensitivity. Simulation and experimental measurements of the
proposed signals were carried out under steady-state operation for both healthy and faulty generator conditions. Stator current
and power were also investigated for rotor electrical asymmetry detection and comparison made with rotor-side inverter
control signals. An investigation was then performed to define the sensitivity of the proposed monitoring signals to fault
severity changes and a comparison made with previous current, power and vibration signal methods. The results confirm that
a simple spectrum analysis of the proposed control loop signals gives effective and sensitive DFIG rotor electrical asymmetry
detection.

1 Introduction

Over the last 15 years, variable speed wind turbines (WTs)
with doubly-fed induction generators (DFIGs) have become
the most applied WT technology and the drive train choice
for up to 60% of large, >1.5 MW WTs [1]. The typical
configuration of these WTs consist of a wound rotor
induction generator (WRIG) with stator winding connected
directly to the grid, whereas the rotor winding is connected
via slip-rings to a partially rated back-to-back converter and
operating as a DFIG, as shown in Fig. 1a. In this system,
the variable speed range is approximately ± 25% of the
synchronous speed, as shown in Fig. 1b. The rating of the
power electronic converter is only 30% of the generator
capacity, which makes this concept attractive and popular
from an economic point of view.
From Fig. 1b, whenever the wind speed is below the rated the

WT-DFIG operates at variable speed, under the control of the
converter. However, when the wind speed reaches the rated,
the WT-DFIG delivers full power, fixed at the top of its
speed range, subject to variations because of wind turbulence.
Like every electrical machine, these generators are prone to

electromechanical faults and require attention at the incipient
fault stage to avoid fault escalation leading to breakdown.
However, a survey to compare the failure rates of WT
induction generator (IG) with other machines in industrial
applications based on data reported in [2–7] has shown the
significance of WT generator failures, which are mainly
concentrated in the rotor, stator and machine bearings, as
shown in Fig. 2.

The study also showed that the failures associated with the
rotor and other parts contribute significantly to the total
number of induction machine failures, particularly in wind
applications, ranging from 12 to 50% of generators failures.
Owing to these percentages, WT-IG rotor fault diagnosis
has received considerable attention and WT DFIG rotor
asymmetry has been shown to be a significant indicator of
WT generator faults, caused by either rotor winding or
brush-gear defects. Previous work investigated the effects
of induction machine rotor faults on the machine electrical
signals [8–9] or mechanical signals [10]. Each method has
its advantages but it is essential that the selected method
should have a high sensitivity to incipient faults and
prevent unexpected breakdown or total destruction of the
machine.
Nowadays, in most applications the induction machine is

part of a complex system with closed-loop control. In this
case, condition monitoring techniques usually applied to
line-fed, open-loop machines may be ineffective, as the
control modifies the behaviour of machine signals and
masks their information. Therefore other signal behaviours
should be investigated and more sophisticated procedures
adopted to find better indices to assess machine condition.
Consequently a number of authors have investigated fault
detection in closed-loop induction machines using machine
control loop signals. Based on simulation and experimental
investigation, frequency analyses of control current signals
have been presented in [11] to diagnose the stator and rotor
faults of controlled squirrel cage induction motors (SCIMs).
A new online method based on measured torque control

www.ietdl.org

878
This is an open access article published by the IET under the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/3.0/)

IET Renew. Power Gener., 2014, Vol. 8, Iss. 8, pp. 878–886
doi: 10.1049/iet-rpg.2013.0324



current component and calculated slip frequency was
proposed in [12]. Later, diagnosis of SCIM rotor faults
through current controller error signals, current controller
output signals and the estimated rotor flux analyses were
studied in [13]. Another investigation of rotor faults in

different controller topologies, particularly in IM open or
closed speed loop control, was presented in [14]. More
recently, this research was developed [15] to include a
SCIM with direct torque control.
However, understanding the influence of WT-IG failures

on different generator control variables and using these
signals for monitoring the WT-IGs has received little
research attention. A simulation and experimental study was
presented in [16] to identify the best diagnostic procedure
for unbalanced DFIG phase fault detection. It was
confirmed that the current signature analysis technique
could be utilised, but a more interesting technique would be
to use rotor modulation signal spectral analysis. More
recently, the sensitivity of rotor modulation signal spectra,
with respect to the variation of current loop bandwidth, was
evaluated in [17] as a new and reliable diagnostic index.
The work described in this paper extends previous WT-IG

failure diagnosis research in [8], based on stator current and
total power spectra, to consider WT-DFIG fault detection
using generator control loop signals. It particularly
concentrates on the rotor side inverter (RSI) and compares
the effectiveness of control loop fault detection signals
with stator current, total power and vibration signals.
Frequency analysis of the RSI current control error signal
is proposed as an effective new diagnostic index for

Fig. 1 Typical configuration of WTs.

a Variable speed WT with DFIG controlled with a partial-scale power converter
b Generator speed against wind speed

Fig. 2 Distribution of failed subassemblies in induction machines
based on data reported in [2–7]
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WT-DFIGs. Using such signals will improve WT condition
monitoring because:

† Control error signals are dominated by the fault effect and
their spectra clearly show faulty harmonics allowing them to
be detected more clearly, compared to generator signal
spectra.
† These signals are already available for control purposes
and can easily be measured, giving them an advantage over
some conventional techniques, which require costly
additional instrumentation and data processing.

The novelty of the paper is its consideration of control
signals for condition monitoring of a variable speed
WT-DFIG, demonstrated by simulation and verified on a
realistic Test Rig. The rest of the paper is organised as
follows: Section 2 gives an in-depth investigation of the
influence of rotor electrical asymmetry on RSI control
signals. Section 3 describes the overall simulation and
experimental tools. Section 4 presents the RSI control
scheme. Section 5 describes the simulation results for the
proposed signals, and then confirmed by experimental
results. The improvement in condition monitoring detection
performance with the proposed method has been
demonstrated in comparison with previous stator current,
power and vibration analysis methods. These comparisons
will demonstrate that the proposed method can reliably
detect rotor fault, regardless of fault severity.

2 Rotor electrical asymmetry

Generator rotor faults, because of the increasing resistance or
open-circuit of one or more of the rotor windings or
brush-gear circuits, results in rotor electrical asymmetry.
Such faults are caused by a combination of magnetic,
thermal and mechanical stresses acting on the rotor, varying
dynamically with loading and environmental conditions.
Although rotor asymmetries do not initially cause a
machine to fail, they can have serious secondary effects,
increasing losses, reducing efficiency and lowering
generator and turbine reliability. However all of this could
be avoided if the machine was supervised by an appropriate
condition monitoring system.

2.1 Basic derivation of electrical frequencies

The sequence of electromagnetic and mechanical phenomena
due to asymmetry in the stator or rotor of an induction
machine was explained in [18]. They give rise to a series of
harmonic components in the rotor current at frequencies
−sf, ±3sf, …, ±isf, where s is the generator slip, f is the
stator frequency and i = 1, 3, 5, ... Although the RSI
controller is designed and implemented for a healthy
generator, its closed-loop action attempts to ensure a correct
operation even in the presence of any rotor asymmetry. In
this case, the PI current control loops try to impose
balanced rotor current references by applying unbalanced
voltages to the rotor winding. Therefore typical generator
current faulty harmonics might become less visible because
of the compensating action of the RSI controller. In
contrast, these fault-components should remain clearly
observable in the error signals inside rotor current PI
controller, allowing these signals to be considered as new
effective diagnostic indices.

The rotor faulty harmonics (±isf) will be transferred into
RSI control loop signals and are expected to produce a
relevant harmonic in the d- and q-rotor currents (idr and iqr)
at ±2msf where m = 1, 2, 3,… Under rotor fault condition,
the d- and q-rotor currents, in the stator flux linkage
reference frame, can be written as

idr(t) = Idr0 (t)+
∑1
m=1

Idr+2m
cos(2p(+2msf )t + Ødr+2m

) (1)

iqr(t) = Iqr0 (t)+
∑1
m=1

Iqr+2m
cos(2p(+2msf )t + Øqr+2m

) (2)

where Idr and Iqr are the harmonic magnitudes of d- and
q-rotor currents, Ødr and Øqr are the harmonic phase shifts
of d- and q-rotor currents. Subtracting (1) from the d-rotor
reference current (idr ref) and (2) from the q-rotor reference
current (iqr ref), the error signals (ɛidr and ɛiqr) inside PI
control loops is obtained. Theoretically idr ref (t) � Idr0 (t) and
iqr ref (t) � Iqr0 (t). Then, the error signals can be written as

Eidr(t) � −
∑1
m=1

Idr+2m
cos(2p(+2msf )t + Ødr+2m

) (3)

Eiqr(t) � −
∑1
m=1

Iqr+2m
cos(2p(+2msf )t + Øqr+2m

) (4)

From (3) and (4), as mentioned before, the current error
signals are expected to contain mainly the faulty harmonics,
which will dominate the error signal spectrum and can be
detected by applying a simple FFT algorithm. In this work,
the used FFT algorithm analyse the component signals in
both the positive and negative sequence, plotting both on
the positive axis of the spectrum. Therefore attention will
be focused only on the 2sf component inside the control
signals, as well as the 2sf and (1–2s)f in the total power and
stator current, respectively.

2.2 Fault representation

In order to test several fault situations in a machine operating
as IG in a WT system, the main problem is to realise a fault
situation similar to reality. In practice, rotor electrical
asymmetries can be modelled by inserting an additional
resistance in series with the rotor phase windings. In this
research, the rotor asymmetry was created on an
experimental Test Rig, by means of external variable
resistor (Rex) connected into one phase of the rotor circuit
via the machine slip rings. This allows different asymmetry
levels to be introduced in a controlled fashion. When Rex is
greater than zero the faulted phase resistance is present. For
clarity, the asymmetric rotor resistance is given as a
percentage of the balanced phase resistance, where rotor
asymmetry, ΔR, in percent, is

DR(%) = Rex

Rr
× 100 (5)

where Rr is the healthy rotor phase resistance. The values of
Rex and ΔR depend on the unbalance severity. Note that
rotor unbalance can be in one phase or more and it will
produce the same relative frequency harmonics in the
machine or control signals. In the same way, the fault can
be applied to a MATLAB model of the Test Rig.
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3 Investigation tools

The proposed technique in this paper has been validated
experimentally on a Durham Test Rig which was designed
to investigate and monitor various WT drive-train failure
modes. Over the last few years, this Rig has been used to
develop a number of WT generator condition monitoring
algorithms [8, 19, 20]. Fig. 3 shows the block diagram of
the Test Rig developed to operate as a WT-driven DFIG. It
comprises a 4-pole, 30 kW WRIG driven through a 5:1
gearbox by a 54 kW DC motor, which simulates the WT.
The stator windings of the WRIG were directly connected
to the grid whereas the rotor windings were fed from a
PWM-RSI controlled by an xPC TargetBox real-time system.
The DC Link was provided by a battery, to avoid any
interaction from the GSI. Therefore the machine operates as a
DFIG, whose details are given in the Appendix. The RSI
control algorithm is designed based on a stator field-oriented
vector control scheme. The controller model was represented
initially in the MATLAB Simulink and when the operator is
ready to run the controller, the model can be simply
compiled to be executable and loaded onto the xPC
TargetBox. However, because of the limitations of the xPC
TargetBox hardware in synchronising the generated phase
PWM signals both the DC-link voltage and the stator voltage
were purposely reduced, compared to the generator and
converter rating, to provide lower distortion control and
generator signals and increase safety. This voltage reduction
lowered the machine flux density. This was not expected to
affect the prospective accuracy of a proposed rotor
asymmetry detection technique on a WT-DFIG operating at
normal operating voltage and flux density, when the PWM
signals are perfectly synchronised. The Test Rig was used to
obtain the measured results presented in this paper.
A mathematical model of the experimental Test Rig was

built in MATLAB Simulink by the authors to represent all
the mechanical and electrical parts of the Rig, as well as the
grid and losses. The validity of the experimental results, in
time and frequency domains, was verified by comparison
with this model, which was used to obtain all the simulated
results presented in this paper.

4 Rotor-side inverter controller

Similar to a real WT-DFIG, the rotor is associated with a
back-to-back converter and the stator directly connected to
the grid in the closed-loop Test Rig configuration. The RSI is
controlled in a synchronously rotating dq-axis frame, with the
d-axis oriented along the stator flux vector position and the
q-axis leading the d-axis by 90°. In this way, a decoupling
between the electrical torque and the rotor excitation current
is obtained in order to control stator active power. The stator
currents are assumed to be positive when flowing from
the grid into the machine. Since the stator is connected to the
grid, and the influence of the stator resistance is small, the
stator magnetising current can be considered constant. Under
stator-flux orientation, the active and reactive powers (Ps and
Qs) delivered by the stator of the machine can be written as a
function of dq-rotor current components and stator voltage
magnitude (|Vs|) as [1]

Ps � −1.5
LM
nsrLs

Vs

∣∣ ∣∣iqr (6)

Qs � 1.5
Lm
Ls

Vs

∣∣ ∣∣ Vs

∣∣ ∣∣
vLm

− idr
nsr

( )
(7)

where Lm and Ls are the generator magnetising and stator
self-inductances, nsr is the stator–rotor turns ratio and ω is the
stator flux speed. By assuming the stator voltage magnitude
and frequency are constant, the stator active power can be
considered proportional to the q-axis rotor current component
and the stator reactive power related to the d-axis rotor
current component.

5 Results

In order to verify the proposed detection method several tests
were carried out on the physical Test Rig and its MATLAB
Simulink model under both healthy and faulty conditions.
The analysis was achieved by comparing the harmonic
spectra of stator current and power with those of d- and

Fig. 3 Schematic diagrams of the WT drive train Test Rig with DIFG
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q-rotor current error signals. The harmonic spectra were
obtained by applying an FFT algorithm to instantaneous
values of the monitored variables which were sampled at 5
kHz.

5.1 Fixed speed operation

In both the simulation and experimental environments, the
system was run at super-synchronous fixed speed of
1600rev/min, with the generator delivering 4.7 kW and
absorbing 1.95 kVAr, under healthy or faulty conditions.
This speed Test Rig operation was undertaken with the
speed of the Test Rig DC drive motor controlled by a
turbine model, developed, tested and verified by Strathclyde
University, representing a WT operating above rated wind
speed at its rated power, as shown in Fig. 1b. The speed of
the Test Rig was approximately constant, but varied because
of turbulence of the wind driving the turbine model and the
action of the DFIG RSI control loop to maintain speed
constant. The effect of any rotor electrical asymmetry on the
WT generator speed would have been negligible, as the
turbine and generator inertia damp this effect. The healthy
rotor resistance, including internal winding resistance, was
0.235 Ω per phase and additional resistance up to 0.047 Ω
was successively added to one phase to give 20% unbalance.
To simplify the presentation of results, all signal spectral
analyses have been normalised to 0 dB at the highest
harmonic component magnitude, depending on the signal type.

5.1.1 Simulated results: Simulations were carried out
operating the machine in a noise-free environment. For
balanced and unbalanced operations, the dq-rotor error
current spectra are presented in Fig. 4. The healthy current
spectra, Figs. 4a and c, indicate the fundamental harmonic
at 0 Hz, 0 dB and a set of harmonics at 19.5, 39, 58.5, 78
and 97.5 Hz, produced by the PWM process used in the
RSI. This set of harmonics is less visible in the faulty
spectra shown in Figs. 4b and d. The faulty spectra show a

significant rise in the magnitude of the 2sf component at
frequency at 6.5 Hz, as expected, which dominate the whole
two spectra.
Simulated healthy and faulty stator current and total power

spectra for this condition are shown in Fig. 5. Only one phase
current signal is presented and analysed here, as is usually the
case for Motor Current Signal Analysis (MCSA). The healthy
current spectrum in Fig. 5a indicates the fundamental
harmonic at 50 Hz whereas the power spectrum in Fig. 5c
indicates the fundamental harmonic at 0 Hz. They show that
the reflection of rotor switching harmonics is not visible in
the stator current compared to the total power. The faulty
stator current and total power spectra in Figs. 5b and d
show visible harmonics related to the fault at 56.5 Hz and
6.5 Hz with magnitudes of −66 dB and −71 dB. Note that,
both the total power and stator current faulty harmonics are
not as large in magnitude as in the case of error signals, Fig. 4.
It can be observed that the harmonic spectra of the d- and

q-rotor current error signals show larger amplitude harmonic
components than at other fault-related frequencies, giving a
better fault indication. Thus, the proposed method is
interesting and could be adopted for improved condition
monitoring.

5.1.2 Measured results: For comparison with simulated
results, in the physical Test Rig the RSI controller and
DFIG measured signals were collected, with rotor circuits
balanced or unbalanced, from the xPC TargetBox.
However, the measured signals now incorporate higher
levels of noise than the simulated signals. This noise was
caused experimentally by

† The small but continuous grid frequency fluctuation,
between 49.9 and 50.1 Hz;
† DFIG stator magnetising unbalance;
† University site grid voltage unbalance which, although
small, contributes to stator unbalance and noise.

Fig. 4 Healthy and faulty simulated spectra for generator control signals

a d-rotor current error-healthy condition
b d-rotor current error-faulty condition
c q-rotor current error-healthy condition
d q-rotor current error-faulty condition
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These noise sources were unavoidable in the current
measurements from the physical Test Rig; however, they
are not specific only to the Test Rig but would also be
present in a real WT-DFIG, so any functioning condition
monitoring system needs to accommodate them.
Frequency analysis of the error signals is shown in Fig. 6.

From these figures, the harmonic 2sf related to the fault
presence is located at 6.5 Hz with a magnitude of −28 and
−22 dB for d-and q-rotor error current spectra, respectively.

However, comparing with the simulation results in Fig. 4, it
can be seen that these magnitudes are not the highest values
in this case and the highest magnitudes appear at 100 Hz in
both spectra. These harmonics, as explained above, are
related to the stator fault contributed by a little grid voltage
unbalance.
The stator current harmonic spectra are presented in

Figs. 7a and b. The magnitude of the faulty harmonic is
less visible with a value of −47 dB for the stator current at

Fig. 5 Healthy and faulty simulated spectra for stator current and total power signals

a Stator current-healthy condition
b Stator current-faulty condition
c Stator total power-healthy condition
d Stator total power-faulty condition

Fig. 6 Healthy and faulty measured spectra for generator control signals

a d-rotor current error-healthy condition
b d-rotor current error-faulty condition
c q-rotor current error-healthy condition
d q-rotor current error-faulty condition
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56.5 Hz (1–2s)f. The total power harmonic spectra are
presented in Figs. 7c and d and the faulty harmonic
component magnitude at 6.5 Hz (2sf) is −60 dB.
Again, these experimental results confirm that the control

error signals have faulty component magnitudes at
frequency (2sf) much higher than the other signals used in
this research. This shows that the proposed technique has
the potential to detect an incipient electrical asymmetry
fault on a WT-DFIG, since the magnitude of the
characteristic harmonic frequency can be easily detected.

5.2 Signal sensitivity on faulty detection

From the simulation and experimental results, it can be
observed that all signal frequency analyses show an
increase in the power level of the fault-frequency

components. However, the signal that provides the best
fault detection depends not only on the faulty harmonic
magnitude but also on its sensitivity. The higher the
sensitivity, the better the fault signature resolution. To
verify the sensitivity achievable using the control and other
signals as diagnostic indices, further simulation and
experimental tests were carried out with the Test Rig DFIG
in a 1400 rev/min steady-state condition at various
fault-severities. The sensitivity values are obtained from the
simulated and measured results by

Sensitivity dB( ) = 10 log10
Af − Ah

Ah

( )
(8)

where Af and Ah are the magnitudes of the faulty and healthy
harmonic components. Complete results of the sensitivity for

Fig. 7 Healthy and faulty measured spectra for stator current and total power signals

a Stator current-healthy condition
b Stator current-faulty condition
c Stator total power-healthy condition
d Stator total power-faulty condition

Fig. 8 Sensitivity from

a Simulation data
b Measured Test Rig data
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the four signal types are summarised and compared in Fig. 8.
It can be seen that the sensitivity of all signals, both simulated
and measured, increased with fault severity. From Fig. 8a, the
sensitivities of the simulated control error signals had high
values with the ability to detect even small fault severities.
However, the q-rotor current error sensitivity was higher
than the d-rotor current error sensitivity as well as those of
the stator
The measured results, Fig. 8b, again show that despite the

experimental effects of noise the q-rotor current error signal
still has higher sensitivity over the other signals. They show
a decreased sensitivity compared with simulation results,
because of the noise in the measured signals, however, the
results still show a significant and usable sensitivity for
condition monitoring purposes.
From these results, it is evident that control signals, d- and

q-rotor current errors, are sensitive to any rotor electrical
asymmetry, with an advantage to the q-rotor current error
compared to d-rotor current error, stator power or current.
Further tests have also been carried out with the Test Rig

operating as when the WT was operating below rated wind
speed and therefore rated power, see Fig. 1b, operating
under full variable speed conditions. The results are similar
to those presented here but have been omitted from this
paper because of limitations of space.

5.3 Test Rig open and closed-loop fault detection
sensitivities

As mentioned in Section 3, the open-loop Test Rig has been
used in previous work to develop other techniques for WT-IG
fault detection. One of these techniques is the frequency
tracking algorithm based on stator line current and total
power analysis [8], which investigated rotor electrical
asymmetry detection for faults similar in magnitude to this
paper. More recently, another technique was introduced in
[21] based on the sideband power factor (SBPF) algorithm
for WT gearbox fault detection by vibration analysis. The
SBPF was successful in detecting gearbox tooth faults on a
high speed shaft pinion. New work is being done to extend
the vibration analysis for rotor electrical asymmetry
detection in WRIG but results are not yet available.
Therefore only the vibration analysis results for gearbox
fault detection are presented in this comparison. Table 1
shows an experimental comparison between fault detection
sensitivities on the closed-loop Test Rig using RSI control
signals and open-loop Test Rig using stator current, power
and vibration signals.

As can be seen from Table 1, the RSI control current error
fault sensitivity is much higher than the frequency tracking
algorithm with the same fault magnitude. This comparison
confirms that the closed-loop detection sensitivities, even in
the presence of noise, are considerably greater than they
were achieved open loop with current, and power signals.
This is because, as shown in (3) and (4), the d- and
q-current error signals in the closed-loop system are mainly
the reflection of rotor health condition changes whereas in
the open-loop system the fault-related response is
influenced by more factors than the fault. A direct
comparison with the SPBF vibration results for electrical
fault detection will be possible once more results are
available.

6 Conclusions

This paper has demonstrated a new WT-DFIG rotor fault
detection technique based on frequency analysis of the
d- and q-rotor error current signals inside the DFIG RSI
controller loop.

† The development of fault harmonics inside the proposed
signal spectra has been explained.
† An RSI stator flux-oriented vector control scheme has been
set up to verify this technique.
† A set of simulated and measured results have been
obtained from a physical Test Rig and its validated model
under fixed speed operating conditions, representing the
conditions when the WT would be at full power.
† It has been shown that d- and q-rotor current error signals
have characteristic frequencies that are a strong diagnostic
index for rotor electrical asymmetry.
† The study has also clearly shown that the proposed
q-control error signal provides better sensitivity to faults
than stator current or total power signals and is a successful
diagnostic even for small faults.
† Fault detection sensitivity in the closed-loop WT-DFIG
Test Rig from the RSI control signals has a better
sensitivity than previously published fault detection on an
the open-loop WT-IG Test Rig from vibration, current and
power signals.
† This technique is simple, attractive and could easily be
extended to diagnose other generator or embedded turbine
faults.
† Because of limitations of space in this paper, investigation
of the method under full variable speed conditions, when the
WT is below rated power, will be reported in a later
publication.

Table 1 Comparison of fault detection sensitivities between open- and closed-loop Test Rig

Test Rig system Closed-loop system Open-loop system

signal type current error signals
inside RSI

stator current stator total power vibration

ɛidr ɛiqr
frequency analysis FFT frequency tracking algorithm SBPF
fault type 20% rotor electrical

asymmetry
23% rotor electrical asymmetry missing tooth of high speed

shaft pinion
harmonics of interests 2sf (1− 2s)f (3− 2s)f 2sf (2− 2s)f 2fmesh,HS and its first five sideband

peaks on each side
stator voltage 78 V 230 V
sensitivity calculated at
1550 rev/min

14.3 dB 15.2 dB 3.0 dB 4.7 dB 6.7 dB 4.9 dB 5.1 dB

sensitivity calculated at
1600 rev/min

14.6 dB 15.3 dB 3.7 dB 6.9 dB 7.3 dB 6.0 dB 4.6 dB
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† This study has shown that the measured results gave a
lower sensitivity to faults than simulated results because of
noise in the experimental system, which requires future
investigation.
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9 Appendix: DFIG parameters

Ratings: Ps = 30 kW, f = 50 Hz and Vs = 230 V
Pole pairs: p = 2
Stator–rotor turns ratio: nsr = 1.272
Stator and rotor resistances: Rs = 0.079 and Rr = 0.044 Ω
Stator and rotor self-inductances: Ls = 0.031 mH and

Lr = 0.019 mH
Magnetising inductance: Lm = 0.031mH
Stator voltage: Vs = 78 V
DC-link voltage: VDC = 48 V
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Abstract 
This paper presents an automated fault detection scheme for 
wind turbine (WT) induction generators with rotor electrical 
asymmetries. Fault indicators developed in previous works 
have made use of the presence of significant spectral peaks in 
the upper sidebands of the supply frequency harmonics; 
however the specific location of these peaks may shift 
depending on the speed of the wind turbine. As wind turbines 
tend to operate under variable speed conditions, it may be 
difficult to predict where these fault-related peaks will occur.  
To circumvent this issue, a set of bandpass filters is proposed 
to capture the fault-related spectral information to train a 
classifier for automatic detection. Several different system 
parameters were tested (e.g., the number of bandpass filters) 
to empirically determine reasonable parameter values. The 
overall fault detection system was then tested on ‘unseen’ 
data and yielded a high classification accuracy of 97.4%, 
demonstrating the efficacy of the proposed approach.   

1 Introduction 

Reliability surveys [1,2] have reported that rotor winding 
unbalance, caused by brush-gear or slip-ring wear/fault or 
winding electrical faults, makes a large contribution to WT 
generator failure rate. Prior works [3,4] have shown that the 
spectral content of the stator currents and the total power can 
contain significant information with regards to certain faults 
in wind turbine induction generators in both the doubly-fed 
(DFIG) and wound rotor (WRIG) configurations. In 
particular, rotor imbalance has been shown to induce a change 
in the generator electrical signature at slip-dependent 
sidebands of the dominant supply frequency and slotting 
frequency harmonic components. Closed-form analytical 
expressions have been derived as to the specific locations of 
these sidebands [5]. Fault indicators have previously been 
developed to aid in the automatic detection of rotor 
asymmetry by extracting and summing the spectral 
amplitudes at the speed-dependent sideband frequencies of 
interest [6]. However, in practice, wind turbines operate at 
variable speed conditions, and in faulty spectra this variability 
will cause the corresponding peak in the sidebands to shift 
along the frequency axis to different locations. Further to this, 
if the speed is unknown, it may not be possible to predict 
where these fault-related peaks will occur.  

This work proposes an implementation for an automated fault 
detector of induction generator rotor electrical asymmetry that 
is invariant to the issue of shifting peaks in the spectra. In 

general, the approach for developing an automated detection / 
classification system is to first extract a set of “features” from 
input data (e.g., images, speech signals), and then use these 
features to train a classifier. Subsequent data can then be 
classified by applying the same feature extraction approach, 
and then inputting the features into the previously trained 
classifier to arrive at a decision / categorization about the 
class of the input data (e.g., healthy or faulty). The selection 
of an appropriate set of features is undoubtedly critical in this 
process towards implementing a successful detection system, 
as it is possible to extract features that do not contain 
information relevant for classification. Therefore, the 
suitability of the proposed set of features for automated fault 
detection will also be investigated by applying a form of 
supervised dimensionality reduction to allow for both visual 
and numerical analyses of experimental “healthy” and 
“faulty” data.  The applicability of the proposed approach to 
detecting different fault levels will also be explored. 

2 Feature Extraction and Dimensionality 
Reduction 

Given the findings in previous works [5,6] regarding the 
manifestation of significant spectral peaks due to rotor 
asymmetry and the variability of the peak locations, the 
extracted features should incorporate information across the 
various frequency bands of interest. To this end, a set of 
bandpass filters is proposed (hereafter referred to as a filter 
bank), where the cutoff frequencies of the bandpass filters are 
determined based on an expected range of slip-dependent 
sideband peak locations, derived from both theory and actual 
experimentation. The average spectral magnitude contained in 
each frequency band of the filter bank is computed and 
concatenated to form a vector of features, whose vector length 
is equal to the number of bandpass filters.  

To investigate the suitability of these features for 
classification / detection, Fisher’s Linear Discriminant (FLD) 
will be applied to the features since its usage will permit 
visualisation of the proposed features in a lower dimensional 
subspace, and can help identify whether or not a distinct 
separation between healthy and faulty data can be attained. 
With FLD, the ability to achieve the desired distinctive 
separations can also be further analysed to determine whether 
or not such linear classifiers may be capable of detecting 
faults at multiple levels (e.g., the fault detector should ideally 
be capable of detecting various levels of rotor imbalances).  
FLD is a tool that is primarily used for dimensionality 
reduction, and computes a linear function of the input data as 
follows: 



2 

y =wTx    (1) 
where y is the (one-dimensional) FLD output, w is an N-
dimensional weight (i.e., projection) vector, and x is an N-
dimensional input vector (e.g., a feature vector derived from 
an input data sample). The weight vector w is determined 
using labelled ‘training’ data to solve an optimisation problem 
that minimises the within-class variability (i.e., spread of the 
data) and maximises the between-class separation of the 
projected output data.  

The within-class variability of the output from Eq. (1) for 
class Ck will be denoted as sk

2  and can be defined as the total 
sample variance, which for FLD, is given by [7]: 

sk
2 = (yn −mk )

2

n∈Ck

∑                      (2) 

where yn is the projected data point of xn using Eq. (1) for 
n ∈Ck  (where k is the class index), and mk is the mean of the 
set of projected data points for class Ck.  

While FLD has a multi-class variant [7], for simplicity, the 
following description of FLD will be restricted to two classes.  
The between-class separation of the projected data for class 1 
and class 2 will be denoted as m12, and can be defined as a 
distance between the means of the projected data from each 
class as follows: 

m12 = (m1 −m2 )
2    (3) 

where m1 and m2 are the means of the projected data 
belonging to class 1 and 2, respectively, and are computed 
using their respective sample mean: 

mk =
1
Nk

yn
n∈Ck

∑ , for k =1,2.                       (4) 

To both maximise the between-class separation and minimise 
the within-class variability, a ratio between the two measures 
can be constructed to formulate the following optimisation 
function [7]: 

J(w) = (m1 −m2 )
2

s1
2 + s2

2
                (5) 

The projected means and variances on the right-hand side of 
Eq. (5) can be rewritten in terms of the original data and the 
weight vector w (making the dependence of the function on 
the weight vector explicit) to obtain the following final form 
of the desired optimisation function: 

J(w) =
wT m1 −m2( ) m1 −m2( )T w

wTSWw
  (6) 

where m1 and m2 (denoted by bold letters to indicate that 
these are vectors) are the sample means of the input data and 
are given by: 

mk =
1
Nk

xn
n∈Ck

∑ , for k =1,2         (7) 

and SW is the total within-class covariance: 

SW = (xn −m1)(xn −m1)
T

n∈C1

∑ + (xn −m2 )(xn −m2 )
T

n∈C2

∑ .     (8) 

Maximizing J(w) from Eq. (6) with respect to w results in the 
following closed-form solution for w [7]: 

w∝SW
−1(m1 −m2 )    (9) 

An optimal threshold for separating the classes after applying 
Eq. (1) to the input (i.e., training) data using the weight vector 
w found from Eq. (9) can subsequently be determined from 
the resulting input data projections.  

3 Experimental Setup 

The proposed approach was tested using data collected from 
the Durham Wind Turbine Condition Monitoring Test Rig 
(WTCMTR), whose schematic diagram is shown in Figure 1. 
The Durham rig was designed to act as a model for a WT 
drive train with the purpose of producing signals comparable 
to those encountered on an operational WT. The Durham rig 
features a WRIG driven at either constant speed or at non-
stationary, variable speed conditions to reflect the stochastic 
effects of wind torque driving. WRIGs used with power 
electronic converters in DFIG type-III configurations are the 
dominant market technology in currently installed MW size 
wind turbines [8]9]. Details of the test rig are given in [6,10]. 
Seeded-fault conditions can be induced or removed from the 
test rig drive train as required enabling several electrical and 
mechanical faults to be implemented repeatedly on demand 
and under controlled driving conditions. Rotor electrical 
asymmetry was simulated on the test rig WRIG by using a 
load bank externally connected to the rotor circuit via the 
machine slip-rings to vary the resistance into one rotor phase 
winding circuit. For experimental purposes, in order to 
represent the development of rotor electrical faults on an 
induction generator, such as brush-gear or slip-ring wear, two 
seeded-fault levels were implemented on the test rig by 
successively adding two additional external resistances to 
phase 1 of the rotor circuit through the external load bank. 
The corresponding levels of rotor electrical asymmetry, given 
as a percentage of the rotor balanced phase resistance, were 
21% and 43%.  These values compare very favourably with 
other studies such as [4,11]. 

Tests on the rig were performed at steady-state, constant 
speed conditions to extract features indicative of the 
developing fault and to design the detection algorithm. The 
WRIG was also driven at wind-like variable speed conditions 
according to speed profiles derived from a 2 MW variable 
speed WT model. In each constant speed test the rig was 
driven for 300 seconds, while in each variable speed test it 
was driven for 450 seconds to allow for sufficient data 
acquisition.   

Data was collected at constant speeds ranging from 1520RPM 
to 1600RPM, and at variable speeds.  Variable speed machine 
testing was performed by using the driving data derived from 
a WT model. This model, developed by the University of 
Strathclyde, as part of the SUPERGEN Wind Energy 
Technologies Consortium, incorporates the properties of 
natural wind and the mechanical behaviour of a 2 MW 
variable speed WT operating under closed-loop conditions.  
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A variety of wind speeds and turbulence intensities, defined 
as the measure of the overall level of turbulence [12], were 
applied to the model. The driving conditions were then scaled 
to the test rig based on the generator speed data from the 
model [10].  The use of the 2 MW variable speed WT driving 
model has allowed the simulation of the different dynamic 
speed behaviours that a full-size WT 4-pole DFIG exhibits 
both below and above rated wind speed. 

The scaled generator variable speed signals used for testing, 
shown in Figure 2, are: 

1. 7.5 m/s mean, 6% turbulence intensity, 
representative of a low mean wind speed with low 
turbulence, with the WT operating at or below rated 
wind speed under generator speed control (hereafter 
denoted as ‘7.5m6t’); and 

2. 15 m/s mean, 20% turbulence intensity, 
representative of a high mean wind speed with high 
turbulence, with the WT operating above rated wind 
speed under blade pitch control (hereafter denoted as 
‘15m20t’). 

Three main sets of experimental data were curated and 
processed in this work that encompass a set of constant 
speeds spread across the experimental range and also includes 
variable-speed data. Table 1 shows the details of each 
experimental dataset. TrainSet is used to train FLD, 
DevSet is used to determine reasonable feature extraction 
parameters using the trained FLD weight vector, and 
EvalSet is used to test the final fault detection system.   

 
Figure 2. WTCMTR generator variable speed test conditions [6]. 

Dataset Speeds (RPM) Fault Levels 

TrainSet 1520 none (healthy) 
21% rotor asymmetry 

DevSet 
 

1525 
1540 
1553 
1585 
1600 

variable (7.5m6t) 
none (healthy) 

21% rotor asymmetry 
43% rotor asymmetry 

EvalSet 

1530 
1555 
1565 
1590 

variable (15m20t) 

Table 1.  Speed and fault level details for the three curated 
datasets.   

 
 Figure 1. Schematic diagram of the Durham WTCMTR [6]. 
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Note that during training, only the ‘healthy’ and ‘21% rotor 
asymmetry’ data is used; this is to test how well the proposed 
fault detector can distinguish between different levels of fault 
(e.g., ‘43% rotor asymmetry’) even when the different fault 
levels are not present in the training data. 

For all data, features are extracted using the filter bank 
approach on the stator current spectra computed from 10-
second windows of the stator current signal with the Hanning 
window applied.  From [6], it is expected that in faulty 
spectra (compared to “healthy” spectra), higher amplitude 
peaks will appear at the 2sf  upper sidebands of the supply 
frequency harmonics, where s is the machine slip and f is the 
supply frequency. Therefore, the filter bank will be 
constructed such that each bandpass filter encompasses the 
2sf upper sideband of each supply frequency harmonic. 
Furthermore, since the expected frequency range of the 
expected sideband peaks can be computed from the given 
speed range of 1520-1600RPM, each bandpass filter will start 
at each supply frequency harmonic + 1Hz and have a range of 
7Hz.  The number of bandpass filters used is initially 
(arbitrarily) selected to be 10 (i.e., one filter is placed at the 
upper sideband of the 1st through 10th supply frequency 
harmonics).   

In this feature extraction approach, there are several 
parameters that can be varied: 

• Length of the analysis time window; 
• Number of bandpass filters; and 
• Frequency range of the bandpass filters. 

These parameters will be tuned (i.e., the ‘best’ values will be 
determined) by using FLD to classify the data from the 
DevSet. The final set of selected feature extraction 
parameters will then be used to test the proposed approach on 
the EvalSet.  Note that EvalSet is never used during 
training or “development” phase (during which the system 
parameters are tuned); the idea is that at least one dataset 
should be held out to test the generalisability of the proposed 
detection system (i.e., how does the detection system perform 
on never-before-seen data). 

4 Results and Discussion 

After training the FLD weight vector, the training data was 
projected to determine an appropriate threshold for 
classifying ‘healthy’ and ‘faulty’, which was selected as the 
halfway point between the means of each projected class. 
Numerical measures of the system performance were taken to 
be the system accuracy (i.e., the percentage of correctly 
identified samples) and the false positive rate (FPR) (i.e., the 
false ‘alarm’ rate), which is computed as the number of 
‘healthy’ samples incorrectly categorized as ‘faulty’ over the 
total number of samples that were determined to be ‘faulty’. 
The resulting classifications for the DevSet (categorising 
both ‘21%’ and ‘43%’ as faulty) are shown in Table 2 for the 
initially selected feature extraction parameters. The initial 
system accuracy and the false positive rate show the efficacy 
of the proposed solution in detecting faults in the stator 

current spectra as the resulting accuracy is quite high with a 
low false positive rate. Tables 3-5 show the system 
performance results for varying the length of the time 
window, the number of bandpass filters, and the frequency 
range of the bandpass filters, respectively. 

 
Feature Extraction  Accuracy False Positive 

Rate (FPR) Parameter Value 
Time Window 10s 

98.8% 1.2% # filters 10  
Freq. Range 7 Hz 

Table 2.  DevSet accuracy and FPR for the initial set of 
feature extraction parameters. 

 
Feature Extraction  Accuracy False Positive 

Rate (FPR) Parameter Value 

Time Window 

1s 77.6% 24.6% 
3s 75.3% 5.9% 
4s 83.2% 5.1% 
5s 98.8% 1.5% 
7s 98.8% 1.1% 

10s 98.8% 1.2% 

Table 3.  DevSet accuracy and FPR when varying the length 
of the time window.  For the other parameters, 10 filters 
were used with a frequency range of 7 Hz each. 

 
Feature Extraction  Accuracy False Positive 

Rate (FPR) Parameter Value 

# filters 

1 81.6% 21.7% 
2 84.7% 18.7% 
5 96.2% 5.4% 
7 96.6% 2.0% 

10 98.8% 1.1% 
15 98.8% 1.1% 
20 99.4% 0.87% 
25 85.8% 1.4% 

Table 4.  DevSet accuracy and FPR when varying number 
of bandpass filters. For the other parameters, a 7s time 
window was used (as this yielded a ‘best’ result shown in 
Table 3), and each filter had a frequency range of 7 Hz. 

 
Feature Extraction  Accuracy False Positive 

Rate (FPR) Parameter Value 

Freq. Range 
5 Hz 69.2% 7.3% 
7 Hz 99.4% 0.87% 
9 Hz 89.8% 8.0% 

Table 5.  DevSet accuracy and FPR when varying the 
frequency range of the bandpass filters.  Note that the 
lower cutoff frequency (the supply harmonic + 1Hz) is the 
same for all frequency ranges; it is only the higher cutoff 
frequency that is varied.  For the other parameters, a 7s 
time window was used with 20 bandpass filters. 
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In varying the feature extraction parameters, from Table 3, it 
is evident that the length of the time window should be at 
least 5 seconds, as the system accuracy drops down 
significantly when the time window is less than 5 seconds.  
However, some improvement in the false positive rate can be 
gained by increasing the amount of time to 7 seconds, so a 
time window of 7 seconds was selected prior to varying the 
number of bandpass filters to produce the results shown in 
Table 4. The results shown in Table 4 demonstrates that the 
number of bandpass filters used does have a significant 
impact on the system performance, as a reduction in the 
number of filters also reduces the system accuracy, and an 
increase in the number of filters yields better system 
accuracy, up to a point (e.g., when using 25 bandpass filters) 
where the accuracy then drops. The drop in accuracy seen for 
a larger number of filters is likely due to noise as it is 
expected that there will be less actual ‘information’ present in 
the spectra at higher harmonics. Table 5 shows the resulting 
system performance when the frequency range of the filters is 
varied.  It is clear that the original selected range was indeed 
the best choice as the performance is notably worse at other 
ranges. These results provide a sort of “sanity check” as the 
original selected frequency range was determined from the 
given speeds at which the experiments were run. 

The resulting FLD projections for the DevSet are shown in 
Figure 3.  A clear delineation between the healthy and faulty 
data can be seen.  Of interest is also the faulty data with 43% 
rotor asymmetry can be seen at even a different level (i.e., 
range of projected values) compared with the ‘21% rotor 
asymmetry’ data even though the ‘43%’ data was not 
included during training. This result further highlights the 
potential generalisability of the proposed approach in even 
detecting alternate fault levels beyond those present during 
training.   

Lastly, the proposed approach was tested on the EvalSet 
without any further system tuning. The resulting system 
performance is shown in Table 6, and the FLD projections for 
the EvalSet are shown in Figure 4.    

 
Feature Extraction  Accuracy False Positive 

Rate (FPR) Parameter Value 
Time Window 7s 

97.4% 3.6% # filters 20  
Freq. Range 7 Hz 

Table 6.  EvalSet accuracy and FPR for the final selected 
set of feature extraction parameters. 

 
The accuracy still remains relatively high, although the false 
positive rate has a significant increase. It can be seen in 
Figure 4 that one particular set of test data included in the 
EvalSet (namely the data on the left-hand side of Figure 4, 
which was collected at 1530RPM) does not exhibit as much 
of a separation between classes as can be seen in the rest of 
the EvalSet data. It is possible that the data collected at this 
particular speed contains more noise than the others; future 
investigations may include noise reduction techniques or 
more generalisable classifiers. 

5 Conclusions 

Overall, the proposed approach is shown to be promising for 
rotor electrical asymmetry detection under practical WT 
operating conditions. The usage of bandpass filters during 
feature extraction was robust against the effects of variable 
speeds. It was also found when varying the number of 
bandpass filters that there is significant information relevant 

 
Figure 3.  FDL Projection of the average spectral magnitudes of the stator current spectra computed in each bandpass filter for 

the DevSet containing speeds ranging from 1525-1600RPM, and a variable-speed dataset.  These features were extracted 
using a 7 second time window and 20 bandpass filters with a frequency range of 7Hz. 
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to fault detection contained in the slip-dependent upper 
sidebands of higher-order harmonics. The application of a 
dimensionality reduction technique enabled the visualisation 
of the proposed features where a clear delineation between 
separate classes can be observed. Of notable interest is the 
ability of the fault detector to also produce an observable 
difference between different levels of faults (21% rotor 
asymmetry vs. 43% rotor asymmetry). The proposed fault 
detection scheme may also be applicable to other machines 
for which the expected fault-related spectral content is 
known. Future work will consider noise reduction techniques, 
other faults that may also manifest in the frequency domain 
such as gearbox degradation, and the application of classifiers 
with known better generalisability such as Support Vector 
Machines. 
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the EvalSet containing speeds ranging from 1530-1590RPM, and a variable-speed dataset.  These features were extracted 
using a 7 second time window and 20 bandpass filters with a frequency range of 7Hz. 
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Abstract 

Wind Turbine (WT) global installed capacity is 

expected to increase from 318GW to 596GW 

between 2013 and 2019, with an increasing 

proportion being from offshore wind farms. With 

up to 70% of Operations and Maintenance (O&M) 

costs coming from unplanned maintenance, the 

adoption of cost effective condition monitoring 

(CM) techniques is crucial for competitive 

development of offshore wind.  

Monitoring the torque of a WT can provide much 

information about the WT’s health and it has 

been shown to be successful in the detection of 

faults in the main drive train components. 

Although WT torsional effects are important, 

torque measurement on such a large, low speed, 

inaccessible machine is practically and 

logistically difficult, although it is possible using 

costly specialised intrusive in-line equipment.  

This paper presents the development of a non-

intrusive method for monitoring the drive train 

torque using timing differences between optical 

probe measurements along a shaft. An algorithm 

has been developed and initially verified using a 

simulated WT for speed and torque data. The 

algorithm torque was accurate to within ±3% of 

the input.  

The initial performance of the proposed 

technique has been successfully tested 

experimentally under both steady and transient 

torque conditions. Experimental results show 

good agreement between the algorithm 

predictions and the measurements. The 

proposed algorithm successfully detects changes 

in shaft speed and torque, with the torque mean 

percentage error within 16-25%. Once 

implemented on a WT drive train, the proposed 

non-intrusive method can overcome the majority 

of problems limiting the industrial application of 

CM systems (CMSs) based on shaft torque 

measurements. 

Keywords: Wind turbine, torque, non-intrusive 

measurement, condition monitoring. 

1. Introduction  

Wind energy is seeing huge increases in 

production with the Global Wind Energy Council 

reporting that global installed wind capacity has 

increased from 6.1 GW in 1996 to 318 GW in 

2013, and is predicted to rise to 596 GW by the 

end of 2018 [1]. Offshore wind has significant 

generation potential, in particular in Europe, with 

increasingly large-scale sites identified as 

suitable for offshore development and benefiting 

from a favourable wind resource. Offshore wind 

is therefore expected to play a significant role in 

meeting this target, with projections of an 

increase in the proportion of offshore turbines 

from 2% to 10% of global wind capacity between 

2015 and 2020 [2]. There any many advantages 

for going offshore including higher quality wind 

resources, less turbulence, larger WT ratings and 

less problematic visual intrusion. However, the 

harsher conditions offshore produce more 

significant variable loading along with difficult site 

accessibility for maintenance as favourable 

weather conditions and special service vessels 

are required for transportation of the 

maintenance team [3]. As large-scale wind farms 

(WF) move further offshore, achieving a high 

availability and capacity factor and ensuring that 

loss of energy and turbine downtime is 

minimised, are essential for a competitive cost of 

energy. The costs of offshore O&M have been 

quantified as three to five times higher than those 

onshore [4], with a considerable part, typically up 

to 65-70%, associated with unscheduled 

maintenance [5, 6], resulting in unexpected WT 

downtime, reduced availability and lost revenue. 

Repair costs are not the only consequence of 

maintenance as the time that is lost in which the 

turbine could have been generating energy and 

revenue must also be considered. These issues 

highlight the importance of O&M strategy within 



economic viability evaluation of large offshore 

WFs [7]. The adoption of cost effective condition 

monitoring (CM) techniques is crucial in reducing 

O&M costs, avoiding catastrophic failures and 

minimizing costly corrective maintenance. As the 

loading on the WT drive train components is 

highly variable the study of transient conditions is 

fundamental to the development of reliable CM 

techniques.  

The potential of monitoring different WT drive 

train components using the shaft torque signal is 

significant as it contains information on the 

mechanical response to wind before any 

generator effects. Recent studies have shown the 

potential benefits of adopting condition 

monitoring systems (CMSs) based on the 

measurement of WT drive train shaft torque for 

the detection of rotor electrical asymmetry and 

machine winding faults [8-10], mass imbalance 

[11], gearbox failures [12], blade mass imbalance 

and aerodynamic asymmetry [13]. However, the 

measurement of shaft torque is largely limited to 

the laboratory environment. The major obstacle 

to industrial application is the costly and intrusive 

nature of the required measurement equipment, 

which is impractical for long-term use on 

operating WTs [14, 15].  

This paper details research conducted on a low-

cost, non-intrusive WT torque measurement 

method based on timing differences between 

optical probe signals along the shaft with a focus 

on tracking transient conditions for use in a CMS. 

2. Theoretical Background 

The torque applied to a rotating shaft is 

proportional to the twist angle between two points 

on the shaft [16]: 

𝑇 = 𝐼𝜃̈ + C𝜃̇ + 𝐾𝜃 (1) 

where T is the applied torque (Nm), I is the shaft 

moment of inertia (kgm
2
), C is the shaft damping 

coefficient (kgm
2
s

-1
rad

-1
), K is the shaft torsional 

stiffness (Nm/rad) and  is the relative twist angle 

(rad) given by: 

𝜃 = 𝜃𝑎 − 𝜃0 (2) 

where a is the absolute twist angle and 0 is the 

no-load twist. a can be calculated by measuring 

the timing difference and rotational speed 

between two points on the shaft [17]: 

𝜃𝑎 =
2𝜋

60
𝜔∆𝑡 (3) 

where 𝜔 is the shaft rotational speed (rpm) and 

∆𝑡 is the timing difference or phase shift (s). The 

no-load twist 0 is the absolute twist angle before 

torque has been applied to the system.  

3. Non-Intrusive Torque 

Measurement  Algorithm 

The proposed non-intrusive torque measurement 

approach employs equation (1) to calculate the 

torque from the phase shift between the pulses 

generated by two bar codes and optical probes, 

one at each end of the shaft. The optical probes 

identify a black or white segment and produce a 

fixed voltage when reading white and zero volts 

when reading black, resulting in two pulse trains 

as the shaft rotates (Figure 1). 

 

Figure 1: Typical pulse trains from the two shaft 

ends, where  is the period and Δt is the phase 
shift. 

The shaft rotational speed is calculated as: 

𝜔 =
60

𝜏𝑝
 (4) 

where p is the number of pulses per shaft 

revolution and   is the pulse train period (s). 

For a given shaft stiffness, damping coefficient 

and moment of inertia, the measurement of the 

phase shift between two pulse trains t and the 

calculation of ω, allow the calculation of the shaft 

torque from equations (1)-(3). 

T

t





4. Simulation Results  

To validate the proposed approach, simulated 

WT drive train data were created using DNV GL’s 

Bladed 4.6 software. The aim of using the Bladed 

simulations was to prove the effectiveness of the 

process of reconstructing the shaft speed and 

torque signals by using discrete pulse trains. The 

twist angle has been reconstructed from the 

simulation speed and torque data and used to 

generate an example pulse train. By analysing 

this pulse train, the ability of the algorithm to 

reverse the process could be tested. The main 

features of the reference example WT used in the 

simulations are shown in Table 1. 

Table 1: WT parameters used in the simulations. 

Blade Length (m) 38.75 

Cut-In Speed (m/s) 4 

Cut-Out Speed (m/s) 25 

Gearbox Ratio 83.33 

High speed shaft speed and torque data were 

collected at 20 Hz under a mean wind speed of 

12m/s with 16% longitudinal turbulence intensity. 

The data were resampled to 50 kHz and 

interpolated to create pulse trains for the 

calculation of shaft speed and torque by using 

the shaft parameters of the example WT in 

Bladed. The resulting algorithm response 

compared to input data is shown in Figure 2.  

 

Figure 2: Algorithm response to WT simulation. 

The trend of the input data simulated by Bladed 

is followed well by the algorithm output with a 

maximum percentage error noise associated of 

±3%. The non-perfect reversibility between the 

original simulated signal and the one 

reconstructed by the algorithm introduces a slight 

reduction in the signal accuracy and the 

introduction of a certain level of noise. 

An increase in the re-sampling frequency of the 

input data up to 100 kHz has shown a reduction 

of the noise levels to ±1.5%, suggesting that the 

sampling frequency and subsequent noise were 

issues requiring further investigation. The 

analysis of the pulse trains proved this to be 

correct as extra time steps at a higher sampling 

rate meant that the pulses were generated to a 

higher accuracy. The effect of resampling at a 

higher frequency is to produce signals which 

allow a smoother and continuous monitoring of 

the phase shift and period changes in the pulse 

trains. Consequently the algorithm measured the 

phase shift and period to a higher precision which 

produced a more accurate measurement. 

5. Test Rig 

Physical testing was performed to verify the 

proposed algorithm. Figure 3 provides a 

schematic of the torque test rig developed at 

Durham University and Figure 4 is a photo of the 

test stand which shows its main components and 

instrumentation system.  

The test rig features a 4-pole 5 kW grid-

connected induction generator driven by a 4-pole 

5 kW induction motor. The motor shaft speed is 

varied via an inverter drive. The generator is 

connected to a VARIAC in order to vary the stator 

voltage and hence the shaft torque. An in-line 

Magtrol TM 212 torque transducer, measuring 

the shaft torque and speed, acts as a reference 

for comparison with the algorithm output. On 

either side of the transducer are the bar codes 

and OPTEK optical probes used to generate 

input data for the algorithm. Each bar code 

features 8 pulses per revolution and has been 

designed such that it divides into equal black and 

white segments, in both number and size, and 

that its total length fits exactly around the shaft. 

This design was selected so that the resulting 

pulses have a 50% duty cycle which makes 

phase shift measurement processing easier. The 

optical sensors consist of an Infrared (890nm) 

Light Emitting Diode (LED) and a NPN silicon 

Phototransistor, mounted side-by-side on 

converging optical axes. Couplings and bearings 

along the shaft ensure minimal radial shaft 



displacement helping to minimise a source of 

error when reading the bar codes. 

Signals recorded from the optical probes are 

transmitted to a National Instruments data 

acquisition pad (USB-6009 DAQ pad) which is in 

turn connected by USB connection to the 

LabVIEW data acquisition environment. The 

probe sampling frequency was set at 24 kHz as 

this was the maximum possible for the NI USB-

6009 data acquisition hardware. The torque 

transducer output is connected to a computer 

interface through the Magtrol Torque 1.0 data 

acquisition software and compared to the 

algorithm torque as verification. 

 

Figure 3: Schematic diagram of the torque test rig. 

 

Figure 4 Torque test rig: main components and instrumentation. 

6. Data Filtering 

Data filtering has been performed on the signals 

recorded during the experiments in order to 

reduce the inherent systematic noise associated 

to the laboratory environment and to guarantee 

accuracy in the algorithm output.  

Firstly a digital conversion was required to covert 

the optical probe voltage signals. A MATLAB 

code was implemented to convert any high 

voltage signal to a 1 and any low voltage signal 

to a 0. This conversion to a digital signal was 

performed in order to improve the algorithm train 

pulse edge detection and therefore the period 

and phase shift measurements.   

Further filtering was carried out to ensure that 

any spikes in the middle of pulses were 

smoothed out. This was accomplished by 

Induction Motor Induction GeneratorTorque Transducer

Barcodes and Optical Probes



comparing each data point with the previous 

400μs of data as well along with following 400μs. 

If all of these data points matched except the one 

being examined, a noise spike was detected and 

converted to match the other 800μs of data 

points. Examination of these spikes showed they 

had a less than 40μs duration, therefore 

analysing each data point using a range ten 

times larger than this assures that checks are 

made on the digital state of the pulse rather than 

on noise spikes. A larger analysis period than 

400μs risked analysing beyond a transition stage 

which means errors would not be detected 

through this method.   

Preliminary experimental results showed that the 

physical optical probes did not display the 

transition in the pulse trains as a sharp edge but 

oscillated from previous to final state for up to 

200μs before settling. A filter was then designed 

to detect any change in digital state between 

consecutive time steps. It inspected the state of 

the pulse in the previous 400μs and the state of 

the pulse for the next 400-800μs. A 400μs period 

was chosen for the same reason as mentioned 

above whilst analysing from 400μs after each 

state change was to ensure that the state of the 

pulse after a transition was checked rather than 

the state during a transition. At a transition, these 

two sets should give the exact opposite of each 

other (i.e. a set of 1’s and a set 0’s) and if this 

was detected, the entire oscillating transition 

period was converted into the final state of the 

transition. The importance of removing all the 

high frequency spikes was to avoid the algorithm 

using them to calculate extremely high erroneous 

speeds. 

Finally, a low pass filter with cut-off frequency of 

1 kHz was implemented to filter out periodic 

noise due to high frequency components in the 

signal.  

7. Experimental Results 

The algorithm has been fully developed by 

experimentally defining the relationship between 

torque and twist. Tests were performed according 

to the procedure below: 

1) Run the motor up to 1600rpm; 

2) Take a no-load measurement (0V applied to 

the generator stator using the VARIAC); 

3) Record pulse and transducer data for 60s; 

4) Use the VARIAC to apply a torque of -0.5Nm; 

5) Record pulse and transducer data for 60s; 

6) Repeat steps 4-5 for increasing magnitude of 

torque; 

7) Repeat 1-6 for different super-synchronous 

speeds. 

Pulse data were analysed using part of the 

algorithm to calculate the twist. For each 60s 

experiment, the means of the measured twist and 

torque were calculated and plotted to find the 

experimental relationship between torque and 

relative twist (Figure 5). The trend of the 

experimental data was then fitted by the following 

quadratic curve: 

T = −8025θ2 − 76𝜃 − 0.5453 (5) 

 

Figure 5: Test rig relationship between torque 
and twist. 

The non-linear relationship between torque and 

twist described by equation (5) suggests that 

steady conditions during the experiments were 

not exactly obtained, especially at low magnitude 

torque values, and that dynamic conditions 

played a crucial role according to that predicted 

by the theoretical relationship (1).  

Tests were then performed to validate the 

proposed algorithm under both steady state and 

transient conditions. The shaft speed and torque 

responses were calculated by implementing the 

proposed algorithm in MATLAB and compared 

with the transducer measurements. Figure 6 

shows results for a steady state test at 1600 rpm 

and -3 Nm torque. The algorithm mean speed 

predictions show good agreement with 

transducer measurements with a percentage 



error of 0.06% and noise of ±0.3%. The algorithm 

mean torque predictions overestimate the 

transducer measurements by 44% with 200% 

noise. It is believed that the reason for the 

overestimation is due to the large amount of 

noise which occurred when calculating the twist, 

linked to the sampling frequency.  

The proposed algorithm was then tested under 

transient conditions with the purpose of 

producing signals comparable to those 

encountered on an operational WT. Figure 7 

shows results for transient conditions obtained by 

running the shaft up to 1600 rpm and smoothly 

varying the torque from 0 Nm to -10 Nm and back 

to 0 Nm. Both algorithm speed and torque track 

the transducer measurements well, particularly 

speed showing a percentage error of below 

0.1%.  

 

 
(a) 

 
(b) 

Figure 6: Algorithm speed (a) and torque (b) response to steady state conditions of 1600 rpm and -3 Nm. 

 
(a) 

 
 (b) 

Figure 7: Algorithm speed (a) and torque (b) response to shaft torque variations.  

Figure 8 shows results for transient conditions 

obtained by keeping the generator stator voltage 

constant at 50% of the maximum whilst ramping 

the motor speed from 1525 rpm to 1750 rpm, 

holding for 30 s and then ramping back to 1500 

rpm. The algorithm speed shows again good 

agreement with measurements with percentage 

errors less than 0.1%. For torque above 2 Nm, 

the average error was consistently around 25%, 

suggesting a systematic error was present. 

Figure 9 shows the effects of a step change in 

torque. The shaft speed was initially set at 1590 

rpm and, starting from an initial torque of -3 Nm, 

four torque step changes were applied. The 

algorithm speed and torque follow the step 

changes well and without any timing delay. The 



algorithm predictions show good agreement with 

the measurements, with systematic errors lower 

than 0.1% for the speed and a torque mean 

percentage error of 16-25%. It is believed that the 

torque error is due to limitations in the signal 

sampling frequency. By increasing the sampling 

frequency during data acquisition it is expected 

that the systematic error associated with the 

measure of the phase shift between the two 

pulse trains would be reduced. This would result 

in improved predictions by the algorithm of the 

shaft twist angle, calculated by using equation 

(3), and of the relative torque values, calculated 

by using equation (5).  

 

 
(a) 

 
(b) 

Figure 8: Algorithm speed (a) and torque (b) response to motor speed variation at fixed generator voltage. 

 
(a) 

 
(b) 

Figure 9: Algorithm speed (a) and torque (b) response to step torque inputs. 

 

8. Discussion 

Although further investigation is required to 

reduce noise and tune the algorithm, the 

experimental results show that the proposed 

technique is successful in predicting changes in 

shaft speed and torque similar to those typically 

encountered by operating WTs.  

Previous work has shown the strong potential of 

using the WT torque signal for CM purposes [8-

13]. The major obstacle to its industrial 

application is the costly and intrusive nature of 

the required measurement equipment, which is 

impractical for long-term use on operating WTs. 

For this reason, in some cases, operators are 

only able to run short measurement campaigns 

by using specially installed torque transducers. 

Given the increasing awareness about the 

importance of long-term torque measurements 

for fully understanding the WT dynamics and for 

CM purposes, the wind industry is showing 



increasing interest in measuring the torque with 

cheap and non-intrusive techniques.  

This work presents a novel approach to measure 

the drive train shaft torque by using a non-

intrusive technique and could be a viable tool for 

WT CM. The proposed methodology is relatively 

simple and cheap to implement into a commercial 

WT CMSs for non-intrusive torque monitoring.  

Although still at the small-scale stage 

implementation the economic benefits of the 

proposed technique, based on the use of two 

barcodes and two optical probe sensors, over the 

conventional in-line torque transducer are 

evident. While the non-intrusive equipment costs 

overall less than €100, the in-line sensor cost for 

a small shaft of 470 mm goes well beyond €5000. 

This difference in costs will be even larger in a 

commercial WT application due to the bigger WT 

drive train shaft diameter, which would increase 

the fitting cost of an in-line torque transducer.  

The torque imposed on a rotating shaft has been 

measured in the past using strain gauges through 

a wireless telemetry or a slip ring system. 

However, the accuracy of the torque 

measurements provided by strain gauges often 

does not meet engineering requirements 

because the uncertainty of such measurements 

is rather large due to electromagnetic 

interference [17]. The results of the proposed 

non-intrusive technique correlate closely with the 

transducer measurements and it is believed that, 

once the sampling frequency of the data 

acquisition system will be increased and the main 

sources of signal noise and systematic errors 

removed, the algorithm should show a higher 

accuracy, compared to other methods, in 

predicting the speed and torque values during the 

WT operation.   

Despite the promising results obtained in this 

study, the reliability of the proposed approach for 

CM purposes is currently under further 

investigation. In particular, drive train seeded-

fault testing and analysis will be performed on the 

torque test rig with the aim of developing reliable 

torque signal processing algorithms for fault 

detection. 

 

9. Conclusions 

This paper presents a non-intrusive technique for 

torque measurement on a WT drive train. It can 

be concluded that: 

 Torque measurement is achieved by 

measuring the angle of twist from the 

timing between pulse trains produced by 

two sets of bar codes and optical 

probes. 

 The proposed algorithm was validated, 

computationally and through physical 

testing, under steady state and transient 

conditions. In both cases the derived 

algorithm torque correlated closely with 

the torque transducer measurements, 

with ±3% and 16-25% torque mean 

percentage errors, respectively. 

 Higher sampling frequency of the data 

acquisition system is expected to reduce 

the noise and the systematic error 

associated with the algorithm output. 

 Unlike conventional torque transducers, 

the proposed approach does not require 

any embedded sensors on the rotating 

shaft, overcoming the majority of 

problems limiting the industrial 

application of CMSs based on shaft 

torque measurements. 

 Experimental investigation is currently 

carried out at Durham University with the 

aim to address the role played by the 

shaft moment of inertia, damping 

coefficient and torsional stiffness in 

controlling the torque predicted by the 

theoretical relationship given by 

equation (1), for both steady and 

transient conditions.    

 Future work will focus on further 

validating the method using 

experimental data and developing 

suitable and reliable signal processing 

algorithms for fault detection.  
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Abstract 

Previous wind turbine condition monitoring 

work identified signals and methods for wind 

turbine fault detection. This paper 

concentrates on raising sensitivity so that high 

reliability is achieved. This is done by adopting 

techniques of earlier papers but aggregating 

them in Side Band and Harmonic Power Factor 

algorithms that can be applied remotely and 

automatically to important WT drive train 

electrical and vibration signals. The process 

has already been demonstrated on a gearbox 

but has been extended here to consider 

generator electrical and vibration signals. The 

value of the algorithm and its detection 

sensitivity have been demonstrated by Test Rig 

results. 

1. Introduction 

Previous wind turbine (WT) condition 

monitoring work by the authors focused on 

developing automatic algorithms for improving 

detection sensitivity on disparate parts of the 

WT drive train and proving their efficacy on a 

Test Rig.  

The aim of automatic fault detection with 

improved sensitivity was based upon a need, 

identified from offshore wind farm operators 

[1], to determine offshore WT condition 

remotely, so that the costly mobilisation of 

diagnosis specialists could be minimised only 

to serious, repairable WT faults. 

The authors have been involved in developing 

the following techniques: 

 WT generator electrical fault detection, 

through analysis of fault frequency 

components or  side-bands in electrical 

current or power spectra[2]; 

 Enhancing WT generator electrical and 

mechanical fault detection sensitivity by 

variable speed tracking of fault frequency 

side-bands in electrical and vibration 

spectra [3]; 

 Extending WT generator fault detection to 

consider rolling element bearing faults [4]; 

 Enhancing WT gearbox fault detection 

sensitivity by collating fault frequency side-

bands in vibration spectra, using a Side 

Band Power factor (SBPF) algorithm [5]. 

In each case the efficacy of the methods was 

tested on the Durham University Wind Turbine 

Condition Monitoring Test Rig (WTCMTR) or a 

similar Test Rig at Manchester University. In [5] 



that process was also extended to results from 

a full- WT gearbox, through the assistance of 

the National Renewable Energy laboratory 

(NREL) in the USA. 

In the case of the WTCMTR it is possible to 

process the results in a commercial WT 

Condition Monitoring System (CMS), the SKF 

WindCon, further demonstrating the 

practicability of what was being proposed. 

This paper presents combining and extending 

these methods, using SKF WindCon Observer 

for the electrical signals and a Bruel&Kjær 

Pulse system for the vibration signals, to 

produce higher detection sensitivities for WT 

variable speed generator electrical and 

mechanical faults. The algorithms have again 

been tested on the Durham WTCMTR and 

Manchester Test Rig. The Durham rig features 

a wound rotor induction generator (WRIG) with 

variable resistance in the rotor circuits, driven 

at either constant speed or with non-stationary, 

variable speed conditions. The Manchester rig 

operates as either a doubly-fed induction 

generator (DFIG) or WRIG at user-defined fixed 

speeds. Both machines operated synchronised 

with the grid with star connected rotor and 

stator windings. Details of the two test rigs are 

given in [2] and [5]. 

2. Electrical Signals 

Experiments were conducted on the WTCMTR 

to investigate the progression of a generator 

rotor unbalance fault at variable speed and 

generator loads. Rotor asymmetry of 23% and 

46% was applied to the test rig induction 

generator by means of external additional 

resistance into one rotor phase winding circuit 

via the machine slip rings.  

An analysis of recorded generator current 

signals, using WindCon Observer, has shown 

that at different generator speeds and loads, in 

the case of an unbalanced generator rotor fault 

there are clear amplitude increases of the 

|  |   upper sidebands of the supply frequency 

1st & 3rd harmonics, where   is the per unit slip 

and    is the stator supply frequency [2]. There 

is also clear dependence of the fault amplitude 

on the WT load, confirming what was shown for 

gearbox vibration signals in [5]. Similar results 

are expected in the power signals, down-

shifted by the fundamental frequency close to 

DC.  

Generator current simulations from 

Manchester have also shown that sidebands 

around the 1st and 3rd harmonics of the supply 

frequency are related to the rotor unbalance.  

Model predictions for balanced and 

unbalanced generator rotor line current 

spectra are shown in Figure 1 for an assumed 

mechanical speed of 1590 rpm and 23% rotor 

asymmetry. 

The sideband on the 3rd harmonic is only 

present when the supply third order time 

harmonic exists in conjunction with the rotor 

electrical fault. These will be useful rotor 

unbalance detection indicators under practical 

WT operating conditions when supply 

unbalance is unavoidable. 

 

 

Figure 1:  Line Current spectra simulation 

results at 1590 rpm for balanced (top) and 

unbalanced (bottom) generator rotor 

conditions. 

Based on the simulation and experimental 

evidence, the two reported sideband 

frequencies have been used as a generator 

rotor unbalance fault indicator. The extraction 
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and monitoring of the spectral components 

was achieved by a Side Band Power Factor 

(SBPF) algorithm similar to that proposed in [5] 

and the techniques presented in [3] to track 

and automate fault detection. The SBPF 

algorithm sums the Power Spectrum 

amplitudes of the |  |   upper sidebands of 

the supply frequency 1st & 3rd harmonics.  

The influence of the fault severity and the 

variable load operating conditions on the SBPF 

values has been investigated by performing 

tests on the WTCMTR at a load up to 3.4 kW. 

Figure 2 shows the SBPF values against the 

load, expressed as a percentage of the 

maximum generator output, for balanced rotor, 

23% and 46% of unbalance level. The results 

show that the SBPF magnitude is proportional 

to the magnitude of the rotor fault level. For 

balanced rotor the SBPF magnitude does not 

vary significantly with the load. For faulty 

conditions the trend of the obtained SBPF 

values can be fitted by an exponential curve.  

The results demonstrate effective operation of 

the SBPF for the full range of the investigated 

load levels. The algorithm is seen to enable 

clear fault detection, for both early and 

advanced stages of rotor fault.

 

Figure 2: Influence of the fault severity and the variable load operating conditions on the SBPF 

values. 

 

3. Vibration Signals 

3.1. Rotor Electrical Unbalance 

Based on the principles presented in [6], it 

follows that the rotor electrical unbalance will 

result in electromagnetic torque oscillations 

that can induce mechanical vibration at the 

same frequencies in the machine frame. Given 

the close relationship between torque and 

power the frequencies that appear in the 

torque spectrum, as consequence of rotor 

electrical unbalance, will also be present in the 

power signal. Therefore, the frequencies 

resulting from the rotor unbalance can be 

present in the power signal, as referred to in 

[2], and in the generator vibration signal [6]. 

A Bruel&Kjær Pulse system was used to record 

the vibration signal from two accelerometers 

fitted to the generator load side end-plate. The 

accelerometers were installed in two planes, 

vertically and horizontally, thus providing a 

comparison between fault effects in different 

positions on the stator frame. The vibration 

signals were recorded for a series of 



experiments at steady-state operating speeds 

of 1530, 1560 and 1590 rpm for balanced 

rotor, 23% and 46% rotor asymmetry 

conditions. 

An analysis of recorded generator 

accelerometer data from the WTCMTR shows 

an amplitude increase, although not strong, of 

the |  |   upper sideband of the twice the 

fundamental supply frequency vibration 

component,     |  |  when going from 

healthy to faulty conditions. Manchester has 

run similar rotor unbalance tests, to allow a 

comparison between the two test rig 

generators’ vibration signatures under 

unbalanced rotor operation.  

The vertically mounted accelerometer vibration 

frequency spectra around the     

|  | frequency for a 1590 rpm speed and 

different fault severity levels are shown in 

Figure 3 for both test rigs. The results show a 

marked increase in the magnitude of the fault 

frequency for the most severe case.  

 

 

Figure 3: Vertical accelerometer vibration 

spectra around the     |  |    sideband (i.e. 

106 Hz) for healthy and unbalanced rotor 

conditions from the Durham (top) and 

Manchester (bottom) test rigs at 1590 rpm. 

As the investigated vibration signals are not 

rich in clearly detectable fault spectral 

signatures, only the     |  |   sideband can 

be used as generator rotor unbalance fault 

indicator. As a consequence, the SBPF 

algorithm, defined as a method of adding 

sideband powers [5], can not be used to 

enhance the sensitivity detection. 

3.2. Bearing Faults 

Bearing faults were experimentally simulated 

on the Manchester test rig by drilling a hole in 

the middle of the bearing outer race 

perpendicular to the race surface on the 

generator drive-end side bearing [4]. To 

simulate different levels of fault severity the 

diameter of the hole was varied from 3 to 

12mm in steps of 3mm. For each considered 

hole dimension the faulted bearing was used 

to perform fault experiments and record the 

frame vibration signal. The machine bearing 

specifications are given in [4]. Bruel&Kjær 

Pulse system was used to record the vibration 

signals from the vertical and horizontal 

accelerometers fitted to the generator load 

side end-plate. The vibration signals were 

recorded for a series of experiments at the 

steady-state operating speeds of 1530, 1560 

and 1590 rpm. 

 Analysis of recorded vibration signals has 

shown that at different generator speeds, the 

bearing faults result in clear amplitude 

increases of the first five outer race bearing 

fault frequency harmonics.  

Based on the experimental evidence, a 

generator bearing outer race fault indicator, 

named the Harmonic Power Factor (HPF) 

algorithm, has been proposed. The HPF sums 

the Power Spectrum amplitudes of the first five 

outer race bearing fault frequency harmonics.  

Figure 4 and Figure 5 show the HPF values 

versus considered values of rotor speed and 

for both vertical and horizontal axis frame 

vibration measurements. 
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Figure 4: Influence of the fault severity and the 

speed operating conditions on the HPF values 

for the vertical accelerometer dataset. 

 

Figure 5: Influence of the fault severity and the 

speed operating conditions on the HPF values 

for the horizontal accelerometer dataset. 

The results show that the HPF magnitude is 

proportional to the magnitude of the bearing 

fault level for both datasets. For the 

investigated operating conditions the proposed 

algorithm works successfully, achieving clear 

fault detection from early to more advanced 

levels of bearing fault. 

4. SBPF and HPF Detection 

Sensitivity 

In order to compare the results obtained for 

the two different generator faults and the 

relative monitoring signals investigated, the 

SBPF and HPF detection sensitivities, 

     and      respectively, have been 

defined as 

      
           

     

                                 

     
         

    

                                       

where       and     ,        and      are 

the SBPF and HPF values for the healthy and 

faulty cases, respectively.  

Table 1 and Table 2 summarise the average 

SBPF and HPF detection sensitivities, 

respectively, for the generator fault conditions 

investigated in this paper. 

Table 1: Generator rotor unbalance average 

SBPF detection sensitivity.  

Rotor Asymmetry  Average %SBPF 

23% 743% 

46% 1897% 

Table 2: Generator drive-end side bearing 

damage average HPF detection sensitivity.  

Bearing 

Fault 

Severity  

Average %HPF 

Vertical 

Accelerometer  

Horizontal 

Accelerometer 

3mm 197% 68% 

6mm 2944% 2911% 

12mm 15848%  36976% 

The sensitivity analysis shows that both the 

SBPF and the HPF techniques prove successful 

in the detection of both early and final stages 

of fault level. It is evident the influence of the 

fault severity on the detection sensitivity 

values; the more damaged is the generator 

component the easier is to discriminate the 

fault. 

5. Conclusions 

This paper has shown that, for generator 

operation with rotor electrical unbalance or 

bearing fault, current and vibration signal 

spectrum contains identifiable fault 

frequencies, which could be tracked as the WT 

rotor speed varies.  

High fault detection sensitivity algorithms, 

SBPF and HPF, can be configured to track the 

observed fault frequency magnitudes and sum 



their powers. This allows to significantly raise 

the detection sensitivity of the signals and to 

improve the reliability of detection.  

The analysis of the generator vibration 

signature was shown to enable rotor electrical 

unbalance detection. However, in this case the 

application of the SBPF algorithm was 

prevented by the presence of only one relevant 

sideband fault frequency.  

In the case of rotor electrical unbalance the 

results have also shown the benefit of tracking 

the SBPF as the WT load varies. These benefits 

have been demonstrated on WTCMTR under 

healthy and faulty conditions. In the case of 

bearing fault, the work presented in this paper 

clearly demonstrates the potential of 

developing real time tracking applications 

based on the HPF algorithm.  

The proposed methodologies are relatively 

simple to implement into a commercial WT 

CMS, as the SKF WindCon, for automatic 

generator fault detection and diagnosis in the 

WT practical environment.  

Such algorithms could be deployed for large 

offshore wind farms to reliably identify 

generator rotor winding and bearing problems, 

known to be a significant cause of down-time. 

It is hoped that field measurements from real 

WTs can be made available to demonstrate the 

application of these methods to real data 

beyond that of the authors’ Test Rigs. 

The major learning outcomes of the paper are: 

 To improve condition monitoring reliability 

using field fitted equipment; 

 To devise automatic techniques that 

reduce the work-load on Wind Farm 

Operators; 

 To develop more comprehensive 

techniques to monitor large offshore wind 

farms; 

 To demonstrate that cheap and effective 

continuous condition monitoring is 

feasible on large offshore wind farms.  
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Abstract 

Wind turbine condition monitoring is gaining in 

importance as operators and developers move 

towards larger, further offshore, less 

accessible wind farms. However, condition 

monitoring is made highly challenging by the 

variable speed, variable load nature of wind 

turbines. Electrical faults, in the form of brush 

gear or slip ring damage contribute significantly 

to downtime yet operators have little 

experience of detecting these faults in the 

field. This paper subjects a physical test rig to 

rotor electrical unbalances and applies a 

frequency tracking algorithm to mechanical 

and electrical monitoring signals to compare 

the sensitivity of the various signals. The 

results shows that the total electrical power 

signal gives the clearest response to rotor 

electrical unbalance, as expected, but that 

torque measurements could be a viable 

alternative. Speed signal analysis showed 

much lower sensitivity to unbalance than 

torque or power measurements. 

 

1. Introduction 

As large-scale wind farms move further 

offshore into more inhospitable environments, 

achieving a high availability and capacity factor 

is essential in ensuring a competitive cost of 

energy. The cost of operations and 

maintenance (O&M) has been shown to be 

anything between 15% and 35% of the cost of 

energy from wind, with [1] giving a figure of 

18% or £12 per MWh generated, making O&M 

a clear target for cost reduction. One approach 

to reducing the cost of O&M is to move away 

from reactive maintenance strategies to 

planned, proactive and preventative strategies. 

This requires the use of remote condition 

monitoring (CM) of individual wind turbines 

(WT) in order to inform operators of the health 

of each WT at any point in time. In order to 

allow for planned maintenance, a CM system 

(CMS) must be able to indicate the severity of a 

fault so that a judgement can be made as to 

when maintenance should take place. A 

particular challenge facing wind farm operators 

is that of automation of fault detection as 

manual interpretation of large amounts of data 

from multiple WTs is costly. Ideally, an 

automated system should present a clear 

detection or health signal to the operator who 

could then choose to examine a particular WT 

in more detail, if required. 

The challenge of WT CM is aggravated by the 

operating conditions. Since the fuel is 

controlled, WTs are subject to highly non-

stationary operating conditions with variable 

speed, power and torque over time. As a result, 

monitoring signals at two points in time cannot 

generally be directly compared to detect faults 

or establish fault severity. 

This paper applies a frequency tracking 

algorithm, designed to reduce the effects of 



varying operating conditions, to mechanical 

and electrical monitoring signals from a 

laboratory test rig to examine how fault 

responses compare between signals when 

generator electrical faults are present. In 

particular, the relative sensitivities of the 

various signals are examined. 

 

2. Monitoring Electrical Faults 

Being such a key drive train component, faults 

in WT generators can have catastrophic effects 

resulting in costly and lengthy repairs. With 

reduced accessibility offshore, any downtime is 

significantly extended. Nevertheless, 

monitoring of electrical faults in generators has 

not yet become standard practice in the wind 

industry. Reliability studies [2] [3] have shown 

that generator defects make a significant 

contribution to WT downtime with [2] showing 

that 30% of total annual downtime results from 

power conversion system failures. Of this, 30% 

of the downtime resulted directly from 

generator failures. A recent survey of failed 

commercial generators [4] showed that brush-

gear and slip-ring failures in wound rotor 

induction generators (WRIG) accounted for 

16% of 2MW range generator failures. In 

smaller machines, 50% of failures originated 

from rotor unbalance. 

Generator rotor electrical unbalances such as 

brush-gear and slip-ring damage have been 

shown to exhibit certain characteristics in the 

stator terminal electrical current and power 

signals [5] [6] for machines operating at 

constant speed and load. These signals can be 

analysed by Fourier transform approaches and 

give clear indications of the presence of 

electrical faults. However, the majority of 

modern WTs operate at variable speed and so 

current and power spectra change rapidly over 

time making conventional analysis challenging. 

In WRIGs, electrical rotor unbalances manifest 

themselves as a function of the machine slip 

as shown in Table 1 where   is the per unit slip, 

   is the stator supply frequency (50 Hz) and    

is the fault frequency of interest. 

 

Table 1: Fault frequencies in stator electrical 

signals 

Signal 
Fault 

Frequency, fc 

Stator Total Power    |  |   

Stator Current    |    |   

 

 

In the majority of modern WTs, however, rotor 

current signals are only monitored for control 

purposes and operators often have difficulty in 

obtaining permission to use these signals for 

CM purposes. However, mechanical signals are 

much more commonly recorded by the CMS. 

Electrical unbalances manifest themselves as 

torque pulsations as they pass through the 

stator magnetic field and so can be expected 

to produce mechanical vibration. In the case of 

rotor electrical unbalance, the unbalance 

manifests itself in speed and torque signals at 

the same frequency as in the stator total power 

signal (    |  |   ). 

 

3. Analysis Approach 

3.1. Frequency Tracking 

Research presented in [7] describes a 

frequency tracking approach which can be 

applied to non-stationary signals on the 

assumption that they are effectively stationary 

if examined over very short periods. The 

Iterative Localised Discrete Fourier Transform 

(IDFTlocal) algorithm is discussed in detail in [7]. 

Importantly, the algorithm always analyses a 

fixed number of shaft rotations rather than a 

fixed length time series. This is a step towards 

taking into account the fact that the machine 

condition has changed. 



The IDFTlocal algorithm is summarised as: 

 Extract initial speed signal data point 

 Calculate time length of the required 

number of machine revolutions and 

extract the relevant amount of data; 

 Calculate sample mean speed; 

 Calculate frequencies of interest; 

 Calculate discrete constants from 

frequencies of interest; 

 Calculate amplitudes for each constant; 

 Extract maximum amplitude; 

 Repeat the process starting with next 

unanalysed speed data point. 

The IDFTlocal is expressed mathematically as:

 

where   is the signal under analysis,   is the 

sampling period and    is the peak amplitude 

for the particular sample. The algorithm is 

derived and defined in full in [7] and is 

graphically represented in figure 1. 

3.2. Detection Sensitivity 

Given that any individual monitoring signal will 

have a different magnitude response to a 

particular unbalance level, it is useful to define 

a sensitivity function to compare results. Here, 

the percentage sensitivity of the response,     

, is defined as: 

    
     

  
     

where    and    are the signal amplitudes 

under unbalanced and healthy conditions 

respectively. This approach is consistent with 

that taken in [8] for monitoring for WT gearbox 

faults. 

 

Figure 1: Graphical representation of the 

IDFTlocal algorithm 

 

4. Physical Test Rig 

Since CM data from large scale operational 

WTs is not readily available, due to operator 

concerns about confidentiality, the data used 

in the paper is recorded from a physical test rig 

at Durham University. Details of the test rig are 

given in [7] and [8]. The test rig, illustrated in 

figure 2, features a grid-connected 30kW 

wound rotor induction generator (WRIG) that is 

driven by a DC motor according to speed 

profiles derived from a WT model. 
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Figure 2: Schematic diagram of the Durham 

test rig 

 

The driving conditions used in this paper are 

shown in figure 3. Rotor electrical unbalances 

are introduced as external resistances. A base 

resistance of 1.3Ω per phase is included to 

allow for a wide generator speed variation as 

would be found in a variable slip WRIG. Faults 

of 23% and 46% of the rotor phase resistance 

are then introduced as external resistances to 

represent the development of rotor electrical 

faults such as brush or slip ring damage. These 

values compare very favourably with other 

studies such as [9] which used external 

resistances of 25%, 50%, 75% and 100% of 

the rotor phase resistance. 

 

Figure 3: Generator variable speed profile 

 

5. Results and Discussion 

5.1. Electrical Signals 

To verify the approach, measurements for the 

instantaneous generator stator total power 

were derived from stator current and voltage 

measurements sampled at 5kHz. The IDFTlocal 

algorithm was applied to the instantaneous 

power signal to extract the magnitude of the 

fault frequency defined in Table 1. Figure 4 

shows the instantaneous frequency of interest, 

  , over time and the magnitude of that 

component as extracted from the total power 

signal. 

 

Figure 4: Frequency tracking of the stator total 

power signal 

The point at which the unbalance level is 

changed from healthy to 23% to 46% is clearly 

visible. The combination of a low noise level 

and significant step change in the extracted 

result shows that the power signal is 

particularly sensitive to electrical faults, as 

would be expected. 

This follows from earlier work [7] and suggests 

that the data is valid. It should be noted that 

the data was recorded in a noisy test 

environment as would be experienced on an 

operational WT so, with this in mind, the clarity 

of the results is very positive. 

The frequency of interest over time and the 

extracted result for a single line current 

measurement are shown in figure 5. It is 

interesting to note that the result is subject to 

much greater inconsistency when compared to 

the power result in figure 4. The reasons for 

this are unclear however it is likely that much 

of the noise is cancelled when three currents 

are considered as the WRIG stator is star-

connected. 
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Figure 5: Frequency tracking of a stator line 

current signal 

 

As would be expected, the electrical 

unbalances are clearly visible in the total 

power signal because of the direct link 

between the fault itself and the measured 

signals. However, in operational WTs, current 

and voltage measurements are not always 

available to operators for monitoring purposes 

and thus mechanical monitoring signals should 

be considered for detection of electrical faults. 

5.2. Mechanical Signals 

The same approach is now applied to the 

mechanical torque and speed measurements 

since these are generally more readily 

available to operators wishing to perform WT 

CM. The power frequency shown in Table 1 

transforms directly into the mechanical signals 

for this machine so was taken as the fault 

frequency of interest for generator speed and 

shaft torque. 

The frequency of interest over time and the 

extracted frequency tracking result for the 

machine speed signal are shown in figure 6. 

 

Figure 6: Frequency tracking of the generator 

speed signal 

 

The speed signal is extremely noisy in 

comparison to the power. This is aggravated by 

the fact that the measurement was taken by a 

digital tachometer whose digital signal was 

converted to an analogue signal for analysis. 

This would be the case in an operational WT 

and it introduces significant filtering even for 

high frequency pulse tachometers sampled at 

high frequencies. 

Nevertheless, a change in fault frequency 

magnitude is visible in figure 6 as the 

unbalance level increases. Given the low power 

levels applied to the test rig, in the 5kW region, 

it is not unsurprising that this mechanical 

signal has not responded as strongly as the 

total electrical power signal. 

However, the electrical unbalance leads 

directly to a reduced electromagnetic torque 

and therefore mechanical torque. Again, as the 

unbalance develops and increases in 

magnitude, it would be expected that the 

torque signal should offer a more sensitive 

detection signal than the speed. The frequency 

of interest over time and the extracted 

frequency tracking result for generator shaft 

torque are shown in figure 7. 
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Figure 7: Frequency tracking of the generator 

shaft torque signal 

The detection signal in figure 7 shows a 

marked change in magnitude as the unbalance 

level is increased. Whilst this is not as 

significant as for the electrical power signal 

shown in figure 4, it is distinct and clearly 

defined over time. It is expected that when 

higher generator powers are experienced, the 

torsional response will increase significantly 

but no data is yet available to test this. 

5.3. Detection Sensitivity 

The sensitivity calculation from section 3.2 was 

applied to results for each signal and each 

unbalance level to allow direct comparison 

between signals. The average sensitivities for 

the two unbalance levels are shown in Table 2. 

 

Table 2: Signal sensitivities to different fault 

levels 

 Sensitivity at: 

Signal 
23% 

Fault 

46% 

Fault 

Speed 57% 215% 

Torque 214% 414% 

Total Power 675% 1200% 

 

As expected, the total electrical power signal is 

most sensitive to rotor electrical unbalances. 

However, the torque signal has a high 

sensitivity albeit with a higher level of noise, as 

shown in figure 7. The speed signal sensitivity 

for the 46% unbalance is the same as that for 

the 23% in the torque signal. Overall, the 

torque signal presents itself as a possible 

option for machine monitoring if it could be 

measured easily in practice. However, further 

investigation is required to establish how the 

torque signal sensitivity varies as systems 

scale up to large-scale WTs. 

 

6. Conclusions 

This paper presents work completed at 

Durham University on the use of electrical and 

mechanical signals for the detection of 

generator electrical unbalances. It can be 

concluded that: 

 Generator electrical unbalances cause 

electrical and mechanical torque 

pulsations that are detectable in both 

electrical and mechanical signals. 

 Generator stator electrical power gives the 

most distinct response to changes in 

unbalance magnitude even for smaller 

fault magnitudes but this signal is not 

widely available in existing monitoring 

systems. 

 Generator speed measurements show a 

change as unbalance is introduced but the 

low power levels on the test rig appear to 

limit the magnitude of the response and 

therefore results have poor sensitivity. 

 Generator shaft torque measurements 

show a distinct change when electrical 

unbalance is present and the response 

would be expected to increase in 

magnitude for higher power machines. 

 Electrical signals are the ideal monitoring 

medium however torque measurements 

could be a strong alternative. 
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Work is ongoing at Durham University to 

examine the sensitivity of mechanical signals 

to electrical faults in large-scale WTs. 
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