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Comparison of different modelling approaches of drive train 
temperature for the purposes of wind turbine failure detection 

J Tautz-Weinert and S J Watson 
Centre for Renewable Energy Systems Technology, Wolfson School of Mechanical, 
Electrical and Manufacturing Engineering, Loughborough University, Loughborough, 
LE11 3TU, UK 

 

j.tautz-weinert@lboro.ac.uk  

Abstract. Effective condition monitoring techniques for wind turbines are needed to improve 
maintenance processes and reduce operational costs. Normal behaviour modelling of 
temperatures with information from other sensors can help to detect wear processes in drive 
trains. In a case study, modelling of bearing and generator temperatures is investigated with 
operational data from the SCADA systems of more than 100 turbines. The focus is here on 
automated training and testing on a farm level to enable an on-line system, which will detect 
failures without human interpretation. Modelling based on linear combinations, artificial neural 
networks, adaptive neuro-fuzzy inference systems, support vector machines and Gaussian 
process regression is compared. The selection of suitable modelling inputs is discussed with 
cross-correlation analyses and a sensitivity study, which reveals that the investigated modelling 
techniques react in different ways to an increased number of inputs. The case study highlights 
advantages of modelling with linear combinations and artificial neural networks in a feed-
forward configuration. 

1.  Introduction 
Onshore wind turbines are now able to compete with fossil fuel powered plants in terms of the 
levelised cost of energy achieving 74 EUR/MWh [1]. But unscheduled maintenance, particularly 
offshore, results in high costs as accessibility is restricted by weather and availability of vessels. 
Studies of recent offshore projects reported operation and maintenance costs of 40-44 EUR/MWh [2]. 
Advanced maintenance strategies based on actual condition rather than using corrective or preventive 
maintenance can reduce these costs. Evaluation of operational data recorded by the Supervisory 
Control And Data Acquisition (SCADA) system of a wind turbine shows promise for the purposes of 
condition monitoring as the high cost of additional sensors in a common dedicated condition 
monitoring system is avoided.  

Increased temperatures in bearings or the gearbox can indicate reduced performance or imminent 
failure as mechanical faults are usually accompanied by increased heat loss [3]. Thresholds of absolute 
values are generally implemented in control systems to avoid overheating. But wear-related changes in 
the temperature trends are often hidden by normal operational fluctuations in temperature due to the 
variable speed nature of modern large-scale wind turbines as shown for a simulated fault in figure 1. 
Some of the first approaches of condition monitoring using SCADA temperature data used manual 
trending against power [3–5] or clustering [6,7] to find anomalies. These techniques succeeded for 
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single turbines in historic analyses, but feasible detection in real time is difficult due to the required 
manual interpretation of results. Another recent approach is normal behaviour modelling, i.e. the 
prediction of a temperature while assuming that the component is behaving normally [8–17]. This 
approach appears to be more suitable for automated failure detection due to an easily interpretable 
indicator, i.e. the residual of measured minus modelled temperature. 

In this paper, different approaches for normal behaviour modelling are investigated using historic 
SCADA data. Extensive tests are conducted to gain not only the most accurate temperature prediction 
for a single turbine and modelling target, but also the average prediction performance and the 
robustness of each approach using automated training and testing. Two different drive train 
temperatures are modelled for more than 100 turbines in a wind farm. 

In section 2 of this paper the methodology is presented. Section 3 provides details of the case study. 
The modelling results are discussed in section 4. The final section summarises the findings and 
addresses future work. 

2.  Methodology 
In this section the idea of normal behaviour modelling is explained and the settings of the different 
modelling approaches described. Cross-correlation and performance metrics are introduced for input 
selection and prediction evaluation, respectively. 

2.1.  Normal behaviour modelling 
Temperature signals in recorded SCADA data can give information about the changing performance 
of mechanical parts. Temperatures of drive trains fluctuate due to the rapidly changing operation of 
variable speed turbines as shown in figure 1. Normal behaviour modelling is a way to reveal hidden 
trends in temperature signals. This type of model can be used to estimate temperature using 
information from sensors external to the component being monitored. Figure 2 shows the idea of 
modelling a measured variable by using environmental signals (e.g. ambient temperatures, wind speed 
etc.) and process parameters (e.g. rotational speeds, other temperatures) as inputs to predict the target 
temperature. The model learns normal behaviour by training with input and desired output data under 
healthy conditions. After training, the residual of measured minus modelled temperature acts as a 
potential indicator of failure: if a fault occurs, the residual will increase. An alarm can be raised if a 
fixed threshold or confidence band is violated [8,12–14], if a Mahalanobis distance considering 
temperature and residual distributions from training exceeds a probability threshold [16] or based on 
an abnormal level index which weights residuals according to their probabilities [17]. Generating 
warnings on the basis of residuals of one or more days of data has been proposed to provide more 
confidence in alarms [11,13,17]. Further evaluation of alarms with fuzzy inference systems has been 
applied [8,13,15,17]. 

 

 

Process

Model

Measured signal

Modelled signal

Residual

Environment

 

Figure 1. Example of a bearing temperature time 
series. A time series of a simulated fault is added 
for visualisation of the detection difficulty. 
 

Figure 2. Normal behaviour modelling sketch. 
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The quality of the failure indicator depends on the accuracy of the modelling. In this study, 
modelling based on linear combinations ([9,11,14,15]) is compared with artificial neural networks 
([8,11,12,15–17]) and adaptive neuro-fuzzy inference systems ([13]). Two novel techniques for 
modelling of SCADA temperatures are added: support vector machine regression and Gaussian 
process regression.  

Autoregressive modelling approaches and state estimation techniques ([18]) are not considered due 
to their more likely adaption to new behaviour in the case of a failure as a result of using the target 
temperature itself for prediction. This is not necessarily desirable for condition monitoring when 
changes in a physical state which may be an indicator of failure need to be detected through an 
increased residual. Due to this reason all approaches are here applied in a strictly non-autoregressive 
way without using any historic values of the target signal (in contrast to approaches in [8–10,16,17]). 

2.2.  Cross-correlation 
The sample cross-correlation (CC) gives a measure of the similarity of two signals and can be used as 
a basis for selecting suitable inputs for modelling. CC at lag 𝑘𝑘 is defined for two (real-valued) signals 
𝑥𝑥 and 𝑦𝑦 as: 

 CC(𝑘𝑘) = � (𝑥𝑥𝑖𝑖+𝑘𝑘 − �̅�𝑥)(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)
𝑖𝑖

 (1) 

with an over-bar denoting the mean value. The summation uses all possible samples for the 
particular lag of interest. Usually CC is normalised to a value of one for auto-correlation at lag zero, 
i.e. the correlation of the target with itself at zero lag.  

2.3.  Model approaches 
Linear modelling is conducted with a least squares fit of first order polynomials. Simple linear 
modelling (LIN) uses a linear regression model consisting of a sum of all inputs with individual 
weights and an interceptor. Linear modelling with interactions (LIN-I) uses a model with intercept, 
linear terms and products of pairs of inputs (without squared terms). 

Artificial neural networks (ANNs) are applied in two configurations: feed-forward (ANN-FF) and 
layer recurrent (ANN-LR). ANN-FF describes a network with only connections from inputs and layers 
to the next layer without any feedback or recurrence and has been used in [11,12] for normal 
behaviour modelling. In contrast, ANN-LRs have a delayed feedback from layer outputs to the input 
of the layer and are used as a novel way to include system inertia in SCADA normal behaviour 
modelling. For both configurations a hyperbolic tangent sigmoid (tansig) transfer function is used for 
neurons in the hidden layer and a linear transfer function for the output layer. Initial tests resulted in an 
architecture consisting of one hidden layer with six neurons. ANN-LRs are set up with a delay of two 
steps for the recurrence. Training of neural networks is conducted by Levenberg-Marquardt 
backpropagation and the mean squared error as performance function. Convergence criteria are 
minimum performance gradient of 10-7, 1000 epochs or 6 successive iterations with validation 
performance failing to decrease. Selected training data are randomly split using 80% for real training 
and the rest for validation. 

Gaussian process regression (GPR) [19] is configured with a squared exponential kernel for the 
covariance function and a constant basis matrix. Standardisation of inputs is applied. Fitting uses a 
subset of data points approximation. 

Linear epsilon-insensitive Support Vector Machine (SVM) [20] regression is applied with a 
Gaussian kernel. A Sequential Minimal Optimisation solver is used with training until a feasibility gap 
of 10-3, a zero gradient or 106 iterations are reached. 

Adaptive Neuro-Fuzzy Inference System (ANFIS) modelling is conducted in a similar manner to 
[13]. Two Gaussian membership functions are associated with each input. A linear membership 
function is used for the output. Training uses a hybrid algorithm utilising backpropagation and least 
squares in 20 epochs. 
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For easier comparison of the modelling accuracy, a ‘trivial’ modelling approach is added, where 
the target temperature is set to the mean value of the training period. The prediction is constant and 
unaffected by any input signals. 

2.4.  Evaluation metrics 
Modelling is conducted in Matlab 2015b on a 64-bit operating four core CPU with 2.8 GHz clock rate 
and 32 GB memory. The runtime for training and testing of each model is recorded to compare the 
computational effort of the investigated approaches. 

Performances of the modelling approaches are evaluated in terms of the mean absolute error 
(MAE), the root mean squared error (RMSE), standard deviation of error (STDE) and the Coefficient 
of Determination (𝑅𝑅2), as defined in equations (2)-(6) with 𝑛𝑛 as the number of samples, 𝑦𝑦 as the 
measured and 𝑦𝑦� as the modelled target temperature. Results of the individual models for all turbines 
are summarised for the farm by calculating the median of the metric values as a measure for the 
average performance ignoring extreme outliers. Although outliers will be of interest in the condition 
monitoring stage, here the focus lies on the average performance of normal behaviour modelling. 
Residual distributions of all turbines are merged by selecting the median for each bin count. 

 MAE = 1
𝑛𝑛
∑ |𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖|𝑛𝑛
𝑖𝑖=1   (2) 

 
RMSE = �1

𝑛𝑛
∑ (𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖)2𝑛𝑛
𝑖𝑖=1 �

1
2  

(3) 

 STDE =  𝜎𝜎(𝑦𝑦� − 𝑦𝑦), with standard deviation 𝜎𝜎(𝑥𝑥) as: (4) 

 
𝜎𝜎(𝑥𝑥) = � 1

𝑛𝑛−1
∑ (𝑥𝑥𝑖𝑖 − �̅�𝑥)2𝑛𝑛
𝑖𝑖=1 �

1
2  

(5) 

 𝑅𝑅2 = 1 − 𝜎𝜎(𝑦𝑦�−𝑦𝑦)2

𝜎𝜎(𝑦𝑦)2   (6) 

3.  Case study 
The different approaches are tested with data from a US wind farm with more than 100 turbines. Six 
months of SCADA data from variable speed turbines with a rated power of 1.5 MW are analysed. The 
data consist of temperatures as well environmental and control parameters in 10 minute averages.  

Two different drive train temperatures are selected to be modelled: a bearing temperature and a 
generator winding temperature. Due to a lack of maintenance information, all turbines are assumed to 
operate normally with only short stops for minor repairs. Distributions of operational status are 
analysed to exclude turbines with significantly long downtimes. The analysis is carried out by visual 
interpretation of status codes and distributions of power output. Six turbines are excluded from 
modelling due to unusually high frequencies of non-operational status codes and downtime. 

The investigated SCADA data are not always of a high quality. Unfeasible sensor values are found 
to occur and temperature records show a non-physically high frequency of discrete whole numbers. 
Although this is a limitation to achieving good modelling accuracy, the aim of comparing different 
approaches is not hindered. Pre-processing of data is conducted in terms of applying valid sensor 
ranges similar to [13]. Detailed investigations of SCADA uncertainties by means of sensitivity studies 
are left for future research. 

3.1.  Cross-correlation results 
All possible inputs for predicting the two chosen target temperatures are analysed with a cross-
correlation (CC) calculation up to a maximum lag of ± 20 ten-minute time-steps. The results in table 1 
indicate that the Bearing A temperature correlates with the other bearing, the ambient and generator 
temperature. Power, currents, wind and rotational speeds have a delayed impact on the bearing 
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temperature. Blade angles and generator voltages do not correlate with the bearing temperature. A 
comparison of the maximum CC with the CC without any lag reveals the most significant difference 
for the ambient temperature with a value of 0.82 for a signal lagging 17 time-steps behind compared to 
0.76 for the simultaneous signals. The results for the Generator 1 temperature as the target show that 
the two generator temperatures are statistically identical. The target temperature is highly correlated 
with the Bearing B temperature, the power, phase currents and wind and rotational speeds. The 
ambient temperature has a low cross-correlation value of 0.48. Power, currents and wind speed have a 
delayed correlation with the generator temperature. 

 

Table 1. Highest normalised cross-correlation (CC) (as a function of lag) with Bearing A (a) and 
Generator 1 (b) temperature. Median of all turbines for first 7500 samples. 
(a)  (b) 

Signal CC(best lag) CC(0)  Signal CC(best lag) CC(0) 
Bearing A temperature 1.00 (0)   Generator 1 temperature 1.00 (0)  
Bearing B temperature 0.86 (1) 0.86  Generator 2 temperature 1.00 (0)  
Ambient temperature 0.82 (-17) 0.76  Bearing B temperature 0.95 (3) 0.94 
Generator 1 temperature 0.76 (0)   Power  0.83 (-2) 0.80 
Generator 2 temperature 0.76 (0)   Phase current A 0.83 (-2) 0.80 
Power 0.45 (-5) 0.42  Phase current C 0.83 (-2) 0.80 
Phase current A 0.45 (-5) 0.42  Phase current B 0.82 (-2) 0.80 
Phase current B 0.45 (-5) 0.42  Wind speed 0.81 (-3) 0.79 
Phase current C 0.45 (-5) 0.43  Bearing A temperature 0.76 (0)  
Wind speed 0.45 (-5) 0.42  Generator speed 0.72 (-3) 0.71 
Generator speed 0.36 (-3) 0.35  Rotor speed 0.72 (-3) 0.71 
Rotor speed 0.36 (-3) 0.35  Ambient temperature 0.48 (-20) 0.39 

3.2.  Model input sensitivity study 
The selection of inputs for the normal behaviour modelling is based on CC results. However, for 
condition monitoring purposes not only the prediction accuracy is important, but also the visibility of a 
fault in the residual [13]. Therefore, previous temperature measurements of the target component are 
excluded from the model as inputs, as these would be affected by any change in condition of the 
component. As the premise of normal behaviour modelling is that the system is not changing then 
including previous measurements may mask systematic changes in the residuals. 

A basic configuration (1a) is defined by selecting the two strongest signals in the CC as inputs 
without any lag. Using more inputs and the optimal lag could increase the prediction accuracy. 
Therefore, a sensitivity study is conducted in which the signal lag is changed and further inputs are 
added according to their CC value. Table 2 summaries the input selection for the configurations with 
different inputs and their sub-variations a-c with different lags. 

3.3.  Training and testing selection 
Models are trained with 7,500 samples, which is equivalent to 52 days. A further 10,000 samples (69 
days) are used for blind testing of the models. A two-fold cross validation is applied by partitioning of 
the measured SCADA time series into a training period and a testing period. These are then reversed 
for a second run. It has to be emphasised that down times and start or stop manoeuvres are not 
excluded in order to test the robustness of the approaches. 
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Table 2. Inputs and lags for modelling the different configurations. 
 Target: Bearing A temperature Target: Generator 1 temperature 
Configuration 1 2 3 1 2 3 
 a b c a b c a b c a b c a b c a b c 
Generator 1 temperature (t) x x x x x x x x x          
Ambient temperature (t) x  x x  x x  x          
Ambient temperature (t-17)  x x  x x  x x          
Bearing B temperature (t)          x x x x x x x x x 
Power (t)    x  x x  x x  x x  x x  x 
Power (t-2)           x x  x x  x x 
Power (t-5)     x x  x x          
Phase current A (t)       x  x    x  x x  x 
Phase current A (t-2)              x x  x x 
Phase current A (t-5)        x x          
Wind speed (t)                x  x 
Wind speed (t-3)                 x x 

4.  Results 
The results of the case study confirmed that modelling of a temperature with information from other 
sensors results in a time series signal, which reliably follows the transient trends of the measured 
signal, as shown for an example in figure 3. 

4.1.  Baseline results 
The results of the bearing temperature modelling with the baseline configuration (1a), table 3, indicate 
that linear, ANN and ANFIS approaches perform each with a similar small error. The best approach 
cannot be found as different approaches perform differently for each of MAE, RMSE, STDE and 𝑅𝑅2 
metrics and for the two tests. GPR and SVM techniques, however, do not perform as accurately as the 
other models. The results in table 4 for the generator temperature modelling show a similar pattern, 
although the ANN approaches give the least errors for all metrics.  

Figure 4 gives an insight into the distribution of model performance across the wind farm. 
Although ANN-LR modelling results in the lowest minimum and median MAE, more than 20 % of 
the turbines have a distinctly larger MAE compared with the other approaches. A model with an 
inferior minimum accuracy, but more constant prediction errors for the whole farm will be preferred 
for failure detection purposes. Maximum errors in the farm should be interpreted with care, as they 
could also denote a problem in the particular turbine, since normal operation is not guaranteed.  

An analysis of the median distribution of the residual time series for the two tests, as given in 
figure 5 and figure 6 for the generator temperature, reveals bell shaped distributions with a slightly 
skewed behaviour. The residuals of nearly all approaches are shifted to negative values for the 
chronological training and test sequences (test 1), but to positive values for the reversed sequence (test 
2). The residual distributions of the linear modelling are skewed in an ambiguous way. If the 
modelling approaches are compared, it can be noted that linear modelling results in the broadest and 
ANN-LR in the sharpest peaks. The skewness trends of the residual distributions are reversed for the 
bearing temperature modelling, i.e. positively skewed for test 1 and negatively skewed for test 2. A 
seasonal influence is assumed to cause the skewness, which is already visible for the trivial model. 
However, the effect cannot be explained completely by this hypothesis. 
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Figure 3. Bearing temperature modelling 
example. 

Figure 4. Sorted MAE of all turbines for bearing 
temperature modelling in configuration 1a, test 1. 

 

Table 3. Performance of different approaches for bearing temperature modelling in 
basic configuration (1a). Median values are given from all turbines’ models. 
 MAE (°C) RMSE (°C) STDE (°C) 𝑅𝑅2 (-) 

Test 1 Test 2 Test 1 Test 2 Test 1 Test 2 Test 1 Test 2 
Trivial 8.92 8.78 10.89 10.62 8.37 7.37 0.00 0.00 
LIN 2.43 2.22 3.30 2.93 2.96 2.88 0.88 0.85 
LIN-I 2.30 2.28 3.16 3.08 2.89 2.99 0.88 0.83 
ANN-FF 2.32 2.34 3.28 3.24 3.08 3.04 0.88 0.84 
ANN-LR 2.15 2.35 3.34 3.82 3.02 3.52 0.87 0.78 
GPR 3.30 3.26 5.28 5.83 4.89 5.32 0.65 0.46 
SVM 3.12 3.15 5.02 5.69 4.53 5.32 0.72 0.48 
ANFIS 2.36 2.27 3.19 3.01 2.94 2.89 0.88 0.85 

 

Table 4. Performance of different approaches for generator temperature modelling 
in basic configuration (1a). Median values are given from all turbines’ models. 

 MAE (°C) RMSE (°C) STDE (°C) 𝑅𝑅2 (-) 
Test 1 Test 2 Test 1 Test 2 Test 1 Test 2 Test 1 Test 2 

Trivial 16.02 16.42 20.27 19.81 18.75 18.43 0.00 0.00 
LIN 3.56 3.42 4.69 4.57 4.60 4.38 0.94 0.95 
LIN-I 3.44 3.36 4.58 4.42 4.52 4.21 0.94 0.95 
ANN-FF 3.04 2.90 4.30 4.26 4.19 4.11 0.95 0.95 
ANN-LR 2.49 2.38 4.25 4.68 4.10 4.55 0.95 0.94 
GPR 3.16 3.25 4.77 5.25 4.64 5.09 0.94 0.93 
SVM 3.40 3.44 5.20 5.91 5.05 5.83 0.93 0.90 
ANFIS 3.35 3.30 4.83 4.37 4.68 4.31 0.94 0.95 
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4.2.  Sensitivity to input selection 
The RMSE is plotted for the different input configurations in figure 7 and figure 8 for bearing and 
generator temperature prediction, respectively. For simplification, results from test 1 and 2 are merged 
by presenting the inferior value from both tests. Using the optimal lag from the CC instead of 
simultaneous inputs is not beneficial in general. Also, more inputs do not lead to higher accuracy for 
all approaches. A moderate RMSE reduction trend is visible for linear and ANN modelling approaches 
if more inputs are used. SVM and ANFIS tend to have larger errors with more inputs. If both 
simultaneous and lagged inputs are used, the error is only smaller for all results in linear and ANN-FF 
modelling. There is no clear trend for the other approaches. The optimal setting is found for the RMSE 
metric in configuration 3c and ANN-FF modelling, although LIN, LIN-I and ANN-LR show very 
similar accuracy. A detailed comparison for this configuration is given in table 5 and table 6 for 
bearing and generator temperature prediction, respectively. For the bearing temperature modelling 
ANN-FF performs best in all median values of the metrics. However, LIN-I shows similar accuracy 
for the median value and is generally a better performer in terms of the mean values of the metrics, 
suggesting that it is less affected by outliers. ANN-LR performs well in terms of the median metric, 
but significantly less well with respect to mean values. The results of the generator temperature 
modelling show that both ANN approaches perform most accurately here if the median metric values 
are compared. For ANN-LR the inferior performance in terms of the mean indicates again that the 
approach performs poorly for some turbines. 
 

  
Figure 5. Median residual distribution for 
generator temperature prediction for test 1. 

Figure 6. Median residual distribution for 
generator temperature prediction for test 2. 
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Figure 7. Input sensitivity study for bearing 
temperature prediction. 

Figure 8. Input sensitivity study for generator 
temperature prediction. ANFIS modelling was 
not completed for configuration 3c due to 
excessive runtimes. 

 

Table 5. Performance for bearing temperature modelling in configuration 3c.  
 MAE (°C) RMSE (°C) STDE (°C) 𝑅𝑅2 (-) 

Median Mean Median Mean Median Mean Median Mean 
LIN 2.04 2.31 2.85 3.16 2.62 2.90 0.87 0.86 
LIN-I 1.84 2.09 2.66 2.88 2.48 2.69 0.89 0.87 
ANN-FF 1.68 1.99 2.51 3.00 2.39 2.81 0.90 0.84 
ANN-LR 1.83 2.87 3.24 4.89 2.98 4.34 0.84 0.04 
GPR 2.67 2.93 5.18 5.47 4.99 5.09 0.56 0.52 

 

Table 6. Performance for generator temperature modelling in configuration 3c.  
 MAE (°C) RMSE (°C) STDE (°C) 𝑅𝑅2 (-) 

Median Mean Median Mean Median Mean Median Mean 
LIN 3.19 3.41 4.07 4.37 4.00 4.23 0.96 0.95 
LIN-I 2.50 2.80 3.71 4.01 3.64 3.87 0.96 0.96 
ANN-FF 2.33 2.61 3.46 4.00 3.29 3.85 0.97 0.95 
ANN-LR 2.05 3.45 3.37 6.29 3.22 5.77 0.97 0.47 
GPR 2.31 2.64 3.74 4.09 3.60 3.96 0.96 0.95 

4.3.  Comparison of computational effort 
Table 7 gives the training and testing runtimes for the different modelling approaches and different 
configurations. The computational effort is insignificant for linear modelling. SVM and ANN-FF are 
trained in about two seconds, but ANN-LR and GPR require 10 and 20 seconds, respectively. The 
runtime for ANFIS increases significantly with the number of inputs with less than a second for a 
configuration with 2 inputs and nearly 30 minutes per turbine for 7 inputs. 
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Table 7. Average runtime for model training and testing per turbine in seconds. 
Configuration Bearing, 

1a, test 1 
Generator, 
1a, test 1 

Bearing, 
2a, test 2 

Bearing, 
2b, test 1 

Bearing, 
2c, test 1 

Generator, 
3a, test 2 

Bearing, 
3c, test 1 

Inputs 2 2 3 3 5 4 7 
LIN 0.02 0.02 0.02 0.02 0.02 0.02 0.02 
LIN-I 0.02 0.02 0.02 0.02 0.03 0.02 0.05 
ANN-FF 2.36 2.28 2.17 2.26 2.43 2.24 2.61 
ANN-LR 11.84 10.14 15.42 10.99 14.38 11.10 18.63 
GPR 18.86 19.86 17.42 17.99 17.50 21.05 17.94 
SVM 2.49 1.92 2.51 2.52 3.12 2.18 3.54 
ANFIS 0.67 0.65 1.60 1.62 32.93 6.41 1702.63 

5.  Conclusion  
Normal behaviour modelling of two wind turbine drive train temperatures has been investigated with 
modelling approaches based on linear systems, ANNs, ANFIS, SVM and GPR. In a case study with 
real SCADA data from more than hundred turbines’ inputs for modelling were selected following a 
detailed correlation analysis. All investigated approaches predict the target temperatures with good 
accuracy. Best results are obtained for linear, ANN and ANFIS modelling in a basic configuration 
with two input signals. GPR modelling works well for the generator temperature prediction, but less 
well for the bearing temperature prediction. Modelling with SVM results in distinctly higher errors for 
both targets. Results of a two-fold cross-validation indicate that there is a seasonal impact in the 
modelling since the residuals are differently skewed for different training periods. In a sensitivity 
study, the impact of adding inputs and introducing time lagged signals is investigated. The results 
indicate that most approaches perform better with more inputs, except for SVM and ANFIS. The 
computational effort is significant for ANN-LR and GPR independent of the number of inputs and for 
the ANFIS model if five or more inputs are used. If the different variants of approaches are compared, 
it can be noted that adding interactions to linear models is beneficial, whereas introducing recurrence 
in the ANN model seems to be only helpful for some turbines, but leads to inferior performance for 
others. Adequate input selection with appropriate delay may be a better way to increase the accuracy, 
although the simple selection of delay based on averaged correlation analysis results does not work in 
general. 

Investigations of filtering out non-operational times (similar to [17]) and a sensitivity study of the 
training length and number of neurons in an ANN have been the subjects of preliminary investigation, 
but are not included in this paper due to length limitations. Further research will continue to find 
suitable approaches for optimal selection of inputs for temperature modelling. In particular ANN-FF 
and linear modelling will be investigated with more inputs using approaches such as stepwise adding 
and removing of inputs. Finally, the failure detection capabilities of the normal behaviour models 
developed in this research need to be tested with real data containing recorded failures. It is intended 
to compare the approaches with auto-regressive and state estimation techniques to evaluate the 
differences in failure detection in more detail. Different advanced alarm concepts like the Mahalanobis 
distance [16] and abnormal level index [17] will be compared. 
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