Wind Turbine Condition Monitoring and Reliability

Dr Donatella Zappalá

WindEurope Conference 2019 - SUPERGEN Wind Hub Showcase Session 3rd April 2019

Outline

- Optical, Contactless Torque Measurement System
- Wind Turbine Generator Condition Monitoring
- Reliability of Wind Turbine Power Converters

Optical, Contactless Torque Measurement System

Speed-controlled Induction Motor Torque Transducer (reference) Barcodes and Optical Probes

Grid-connected Induction Generator

[1] Zappalá et al., 2018, *Meas. Sci. Technol.* 29(6): 065207[2] Zappalá et al., In Press, *The Journal of Engineering*

Optical Torque Measurement

Torsional measurement provides useful loading information but a non-invasive, cost-effective solution is needed.

Time shifts between pulses analysed over time using either edge analysis or cross-correlation approaches

Wind Turbine Dynamic Transient Loads

- Long-term mechanical torque measurements for fully understanding WT dynamics and for CM purposes
- Direct measurement of the shaft dynamic behaviour under transient conditions, the most critical for the WT drive train components

Wind Turbine Generator Condition Monitoring

Electrical & Mechanical Diagnostic Indicators MANCHESTER 1824

- Comprehensive model and experimental study of generator rotor electrical unbalance (REU) at varying load and fault levels
- Significant increase in the magnitude of slip-dependant side-bands of a wide range of both supply frequency and slotting harmonics under faulty REU conditions

Fault Detection

Influence of REU severity and generator load on the fault recognition capability

Normalised Detectability $D = \frac{\sum_i F_i^2}{\sum_i H_i^2}$

Automated Rotor Fault Detection

Experimental Datasets

Data collected from the Durham Wind Turbine Condition Monitoring Test Rig

	Dataset	Speed (rpm)	Fault Level
FLD training	TrainSet	1520	none (healthy) 21% rotor asymmetry
Feature extraction parameter tuning	DevSet	1525 1540 1553 1585 1600	none (healthy)
		variable (7.5m/s mean, 6% turbulence intensity)	21% rotor asymmetry
Fault detection system testing	EvalSet	1530 1555 1565 1590 variable (15m/s mean, 20% turbulence intensity)	43% rotor asymmetry
 Varied parameters: time window length (1 to seconds) Number of bandpass filters (1 to 25) Frequency range of bandpass filters (5Hz, 7Hz, 9Hz) 			

FLD Projection (DevSet)

'Best' DevSet parameters:

- 7 second time window
- 20 bandpass filters
- 7Hz frequency range

98.8% Accuracy 1.2% False Positive Rate (FPR)

Durham

University

FLD Projection (EvalSet)

Using 'best' parameters from DevSet testing

Wind Turbine Power Converter Reliability: Models and Test Rig

- 1. Which wind speed **operating conditions** cause the **greatest thermal loading** to power modules and how does this correspond to **damage**?
- 2. Is manufacturer thermal data valid for lifetime estimation under complex wind turbine loading conditions?

Simulate wind turbine drive train and wind speed profiles Simulate power module thermal loading profiles Experimentally validate model and explore assumptions

[1] Smith et al., 2017, IET Power Electronics 10(11): 1268 – 1278[2] Smith et al., In Press, The Journal of Engineering

Modelling

Jurham

University

What drives unreliability in wind turbine power converters?

The lower the frequency of wind speed variation, the higher the temperature swing, the greater the damage

Power electronic device thermal response depends on incoming wind and drive train dynamics, not just electrical design/control

IR Thermal Measurement

50

Infra-red sensor and high-frequency chopper allow fast, low-noise temperature measurement on power module IGBTs and diodes

Modelling vs. Experiment

Wind Turbine Condition Monitoring and Reliability

Thank you for your attention. Any questions?

Dr Donatella Zappalá donatella.zappala@durham.ac.uk

