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Key Objectives e

To improve:

+ modelling of offshore wind conditions;

* modelling of wake losses within and downwind of offshore wind
farms;

* modelling of dynamic loading, fatigue and
accumulated damage for offshore wind turbines;

 turbine life and overall wind farm efficiency.



m EPSRC
SUPERGEN Pioneering research
WIND :

; Interactions and Work Packages it
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I Wind Farm Analysis/Modelling (we1, wp2) st

e CFD + met data (e.g. ECMWF) & production data (e.g. Elexon)
— wake effects in various farm layouts - existing and hypothetical
— wake effects of farm orientation to wind rose

— effects of atmospheric stability on farm productivity

(effect of surface condition, weak inversion)
small hypothetic wind farm
—regular vs staggered
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e Satellite mesoscale wind field data (provided by DTU)
e Events highlighted and compared to models

e WRF simulations to show effect on power timescales

Wind Speed m/s ’ " T a) AGW b) no event
[ 3600 3600
, Ry
10 15 2 < '; ,rlv oo(:b ‘s..‘..: %% Oqgggog
w58 %%
AT | &%.OQ%%EO?:'... g.goé%%gbo 2400§
: ' OO o%O 00 0%%0 2
1600 &
=
o8 58 oS8 =
% £ &%%
% 800
oézgc;% o(?:ozoé%
0 0
Greater Gabbard

AGW = Atmospheric Gravity Wave
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: Wind Condition Analysis (w1, we2) T

Estimated power output for a turbine at
Greater Gabbard during gust front event vs.
a non-event day at the same location.

3000 S

Power (kW)
S
8

Wind Speed m/s

1000

w0 15 £

++eno event

===gust front

0
00:00 04:00 08:00 12:00 16:00 20:00

Time UTC (hh:mm)

Siemens 3.6 MW turbine

51 W Loughborough
-%7 University



m EPSRC
St , Wake losses from satellite measurement Zogie==""

(WP2)

Wind speed derived from satellite radar
backscatter on the sea surface,

from Sentinel 1

-

wind_speed (m s-1)
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Detecting wake effects from average
wind speeds seen across many SAR
scenes: Selecting on sample radii from
a wind farm.
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WIND I and skills

Wind Speed on Circles Around London Array - Averaged over 150 SAR Scenes
Rotated relative to wind direction so that upwind is always at 0° and downwind is always at 180°
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' Effects of atmospheric stability (w1, wpz) — andsiis

Cases:
Unstable

Stable - no inversion;
with inversion

Neutral - datum cases

Working section:
20 m long; 3.5 m wide; 1.5 m high

Working section - Looking upstream < UNIVERSITY OF

p.hancock@surrey.ac.uk SURREY
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' Effects of atmospheric stability (we1, wp2) i
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; Aerodynamic-aeroelastic modelling (wp3) =5

e Baseline - In-house aeroelastic simulation framework (SHARPy)
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UVLM with arbitrary Geom-nonlinear
kinematics CompOSIte beams >1DD~ED -60 -40 20 o 20 40 60 80

e Time-domain, nonlinear solver
* Includes composites (aeroelastic tailoring), flaps, arbitrary inflow
¢ Numerically efficient (C++/Fortran), all wrapped in Python

Imperial College
r.palacios@imperial.ac.uk London
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e Based on the DTU 10 MW Reference Turbine: 90m long blades.
e DTU - Abaqus shell model and cross section meshes/data

e STFC to apply loads from the IC aeroelastic model (aerodynamic,
gyroscopic, ...) to Abaqus shell model of a blade.

From 3D FEM to geometrically-exact beam model (GEBM)

DTU 10 MW blade Cross-sectional reduction 3D FEM vs GEBM
High-fidelity FEM model
[
& Science & Technology Facilities Council Imperial Co“ege
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Aero-structure - model-order reduction (w#sj:
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Efficient model order reduction of linearized aeroelastic system

Projection over structural modes: Frequency-limited balanced truncation:
+ ROM order comparable to No. inputs/outputs + ROMs at a fraction of the cost (low-rank)
(from 200,000 -> 40 states) + Virtually no loss of accuracy
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Resulting ROM suitable for
farm control integration & detailed fatigue analysis
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Wind farm control (wea) ot
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« Wind farm control objectives
— maximise generated power
— Provide ancillary services to grid
— Minimise O&M costs

» Wind farm control design and analysis models are required.
— Performance assessment is over full operating envelop.

— Simulation should include the wind field & wakes, turbines (up to 100+)
and wind farm controller.
lhhukyd@

— Fast simulation execution times required.
Strathclyde
Glas yd

w.leithead@strath.ac.uk goOW
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Wind farm control (wea) Froncen
SUPERGEN variable speed
pitch regulated, 3-bladed, st s ot [
HAWT exemplar turbine. " (e
H Wi erodynamics N
5MW, other sizes to be added g;'—-) rere L Tz
(1OMW, ...). i DT —
local rotor itch Rotor
Uses lumped parameter Teamponenn L e | e | Dynamies
. . pitch | Mechanism
models for representing drive Pacarul [
train, rotor and blade dynamics ot | el ]
’ y ’ | torque demand_ | < speed
* Reformulated BEM based pr—

speed Drivetrain i plane
aerodynamic coefficient models K /

to determine the thrust and
torque at the rotor including

Simulation time, single WT for 600s:

dynamic induction lag. Continuous = 18s
Discrete = 14s
Continuous (Simulink) and Discrete (C/C++)
forms available. m...w@
Strathclyde
Glasgow

Wind farm control (wea) iRl
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Controller structure

Control for maximum production

Control for AS provision + Markets

Control impact on O&M and life time

Network Wind Farm Controller (NWFC)

\ Turbine Wind Farm Controller (TWFC)
Network Inputs === \etork Wind AP — o
Farm Controller Turbine Wind Farm Controller ‘ Turbine inputs
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Power Adjusting Controller (PAC)

. Wind Farm Controller Structure with Power Adjusting Control (PAC) Strategy



Wind farm control (wra)

SUPERGEN
WIND I

EPSRC

Pioneering research

and skills
e Comparison of loads to Bladed
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We have made good progress in bringing together key elements of

- wind resource
- wakes and inflow

- fluctuating loads and fatigue prediction

- and an encompassing control environment.

There is much more to do.

Thank you



