SuperGen Assembly Cranfield University.

23<sup>rd</sup> Nov. 2016.

### Incident and Wake Turbulence and Interactions with Horizontal Axis Rotors.

#### Mike Graham,

Department of Aeronautics, Imperial College London

Acknowledgements: Rafael Palacios-Nieto, David Hankin (BMT FM).

Imperial College London

### Summary:

- HAWTs typically 3 bladed, upwind rotor machines, diameter up to ~150m, tip speed ~ 80+ms<sup>-1</sup>.
   [HATT prototypes typically 2 bladed, up- & down-stream rotors, diam. ~ 30m, tip speed O(10ms<sup>-1</sup>).]
- Rotor blades are subject to Random loads due to incident
  Turbulence in the ABL or in wakes of other upstream
  turbines when deployed in farm arrays.
- As part of SuperGen (MAXFARM) Imperial College is investigating aerodynamic control to reduce unsteady blade loading.
- This presentation will deal with some issues of the turbulence impacting the rotor blades.

### **Rotor Wakes.** Wind-Farm (Horns Rev, offshore) Denmark)



### **Flow Field Computation**

- URANS computation of the flow around a (downwind) HAWT. [Acknowledgement F. Zahle (Risoe Lab.)]
- Iso-contours of absolute vorticity shown.
- Tip and root vortices preserved well downstream of turbine when incident flow is uniform.





### **Aeroelastic Rotor Flow Simulation**

[Free Wake Panel Method – unsteady vortex lattice method (UVLM), FEA Beam element dynamics, Twin-bladed rotor].



### Mesh for convected turbulence field



### INCIDENT TURBULENCE (ABL) Simulated Streamwise Velocity Component assuming von-Karman spectrum and Gaussian probability. Von Karman spectrum u velocity component



### **Power and Thrust Coefficient Response**



 $\Lambda = 5$ 

### **INCIDENT TURBULENCE DISTORTION** Schematic of Actuator Disc Mean Flow



## (Homogeneous) distortion of small length-scale turbulence $\overline{u^2}/\overline{u_{\infty}}^2$ , (Batchelor & Proudman, Farr & Hancock)



# Spectrum Suu of distorted small length-scale turbulence, ---- undistorted (von Karman spectrum).



# Mean square intensity and transverse length-scale of distorted turbulence $\overline{u^2}/\overline{u_0^2}$ , $L_2/L_{2,0}$



### **Distortion of Turbulence into a HAWT Rotor (axis)**



### Incident Wakes from Upwind Rotors

Mean flow and turbulence

### Distortion of mean flow profile of rotor wake.



Mean  $\Delta U$  on axis at rotor /  $\Delta U_{\infty}$ Velocity defect  $\Delta U_{\infty} = 0.25U_{\infty}$ 

### Turbulence and Wake Interactions (Wind Tunnel Expt.)



# Wake of a three bladed rotor in uniform incident flow (UVLM free vortex wake)



## Mean wake velocity profile U(y), versus experiment of Hancock & Pascheke (o)



Actuator disc or line representation of rotors for RANS computations of turbulence in wind farms.

- Sinks of mean flow momentum.
- Sources of turbulence KE. (κ)
- Length-scale of rotor wake turbulence (ε)

Alternatively LES simulations (eg: Porte-Agel et al.)

### Transverse profiles of $\overline{u^2}/U^2$ , o Hancock & Pascheke



## Spectrum of turbulence in rotor wake 1D downstream of rotor.



## Autocorrelation coefficient versus time separation in wake 1D downstream of rotor.



# Autocorrelation time-scale $L_T$ in wake of rotor 1D downstream



### Turbulence intensity $\overline{u^2}/U_{wind}^2$ versus rotor thrust coefficient $C_T$

Sampling of turbulent velocities induced in (UVLM) rotor wake indicates a quadratic correlation between  $\overline{u^2}/U_{\infty}^2$  and  $C_T$ 

Turbulence Energy, Length scale and dissipation in rotor wake Approximating  $\kappa = \frac{1}{2} \overline{q^2}$  by  $\overline{u^2}$ 

$$L_{\varepsilon} \approx L_{\chi} \sim \frac{(1-a)D}{N_B \Lambda}$$

#### Therefore dissipation

$$\varepsilon = \kappa^{3/2} / L_{\varepsilon} \sim \frac{N_B \Lambda C_T^3 U_{wind}^3}{(1-a)D}$$

### <u>Conclusions</u>

Distortion of turbulence only significant if length scale of turbulence < rotor diameter.

Some distortion (< 15%) of mean wake profiles may be expected.

Some empirical correlations for turbulence KE. (κ) and length-scale (dissipation ε) have been estimated for a rotor wake.