

Vertical Axis Wind Turbine Case Study: Costs and Losses associated with Variable Torque and Speed Strategies

Michael Argent¹, Alasdair McDonald¹

¹ CDT Wind Energy Systems, Rm 3.36, Royal College Building University of Strathclyde, 204 George Street, Glasgow, G1 1XW

michael.argent@strath.ac.uk

1) OVERVIEW

- Generator Case Study for Large Offshore VAWT
- Directly Driven Permanent Magnet Generator (DD PMG)
- Modelling effect on costs & losses of inherent cyclic torque loading caused by periodic variation in aerodynamic load from rotor blades
- Strategies to control magnitude of electrical torque variation q ratio
- Equations for Copper and Iron Losses based on these strategies
- Relationship between cost and electrical torque variation allowed
- Work presented is part of 3 year PhD into VAWT Drivetrains

2) CYCLIC TORQUE

- Mechanical torque is modelled using a sinusoidal variation $T_{\rm MECH} = \bar{T} + T_{\Delta} \sin(2\theta)$ [2 bladed rotor]
- Electrical torque control is parameterised by $q = \frac{T_{\Delta_{\rm ELEC}}}{T_{\Delta_{\rm MECH}}}$
- Torque control strategies can vary between two extremes: q = 0 (fixed $T_{\rm ELEC}$) and q = 1 (fixed rotor speed)

- Depending on the strategy, there can be a torque imbalance between $T_{\rm MECH}$ and $T_{\rm ELEC}$ resulting in a changing rotor speed: $T_{\rm MECH} T_{\rm ELEC} = J\alpha$
- The variance in electrical torque and/or rotor speed will effect the copper and iron losses experienced by the generator

Varying $T_{\rm ELEC}$ (q>0)

Varying Current I

Copper Losses : $\int I^2 R$

$$P_{Cu} = R \left(\overline{I}^2 + \frac{1}{2} (qI_{\Delta})^2 \right)$$

Varying Rotor Speed (q<1)

=> Varying Electrical Frequency Iron Losses depend on f_e

$$P_{Fe} = \sum (A_h \overline{f_e} + A_e \overline{f_e^2}) \hat{B}_{Fe_i}^2 m_i$$

Both $\overline{f_e} \& \overline{f_e}^2$ proportional to (1-q)

Copper Losses $\propto q^2$

Iron Losses $\propto (1-q)$

Generator cost depends on peak electrical torque loading

3) GENERATOR MODELLING

- Single pole pair of generator modelled
 - Electrical equivalent circuit in MATLAB
 - Magnetic Circuit Model in Finite Element Analysis package FEMM
- Programming Procedure:
 - MATLAB calculates generator sizings
 - FEMM calculates airgap flux density
 - MATLAB calculates equivalent circuit and resulting power output & losses
- Generator is 5MW DD PMG for use in offshore H-rotor VAWT, see paper for specs

4) LOSSES FOR A FIXED WIND SPEED

- Comparing how losses vary for different torque factor q settings.
- Copper losses increase with q^2
- Iron losses
 decrease linearly with q
- At this speed losses are of similar magnitude
 - For 9m/s Losses minimised at q=0.4

5) LOSS MINIMISATION STRATEGIES

- Calculate losses for each
 q strategy for whole range
 of wind speeds (% change
 vs fixed torque setting q=0)
- Losses minimised when:
- q = 1 at low wind speeds
- q near 0 at high speeds
- 0<q<1 medium speeds
- A loss minimisation strategy q_{OPT} can be setup which varies q with wind speed to minimise generator losses q_{OPT}^{100}
- q_{OPT} 0.8% loss reduction vs best single q strategy (q=0.4) (1.5% vs q=0 fixed torque)

6) PEAK TORQUE AND COSTS

- Peak T_{ELEC} ∝ q
 (larger peak torque for fixed speed than fixed torque requires larger generator)
- q_{OPT} strategy: lower torque at rated => lower cost
- Restricting q at rated can lead to cost saving

7) CONCLUSIONS

- Adjusting torque control strategy can lead to loss reductions
- Biggest reductions allowing generator to adapt to wind speed
- Loss reduction: fixed speed at low wind speeds

low torque variation at higher speeds

- Future research: aerodynamic efficiency from speed variation (potential loss at low *q*, limited effect due to large rotor inertia); rescaling the generator (smaller generator with limit on *q* at rated)
- PhD Overall Aim: optimise the VAWT powertrain design to minimise Cost of Energy & compare with commercial HAWTs

This research was funded by the EPSRC through the Centre for Doctoral Training in Wind Energy Systems at the University of Strathclyde, award no. EP/G037728/1.

