
2. Gaussian Process Machine Learning (GPML) 
Gaussian process (GP) machine learning theory allows for regression of noisy function values 
inside a probabilistic framework by modelling a continuous function, f say, as a collection of 
multivariate Gaussian distributed random variables corresponding to the function’s output at 
a collection of input variable values (f(xi) for i = 1,…,N). 
 
A prior distribution over a set of noisy measurement values is formed via a maximum 
likelihood procedure. The most likely value of noise variance is determined as part of this 
procedure. 
 
The function output values for a chosen set of input values can then be predicted using the 
Gaussian conditional distribution, with the mean function being interpreted as giving the 
most likely function values for the true function and two standard deviations at each point 
taken as 95% confidence intervals for the prediction. Figure 1 shows an example of a GP 
prediction and confidence intervals from noisy data.  
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1. Introduction 
Huge amounts of data are available to a wind turbine control system, unfortunately this data 
is usually composed of several additive components, plus noise. 
 
This project seeks to apply machine learning techniques to extract these component parts, 
this will allow for improved control and a deeper understanding of wind turbine dynamics.  
 
The first focus of this project is determining wind turbine CQ tables and drivetrain losses 
from measuring generator speed and reaction torque. In above rated operation the wind 
turbine dynamics are approximately, 
 

𝑄𝑎𝑒𝑟 − 𝐿(ωr) = 𝑁𝑄𝑔𝑒𝑛 + 𝐽ω r 

 
J is rotor inertia,  N the gearbox ratio, L is the drivetrain losses, Q is torque and ωr is rotor 
rotational speed. The losses function L is assumed to be linear. 
 
The RHS of the above equation can be determined using measurements available to the 
control system.  Linking the above dynamic equation to the aerodynamics of  a wind turbine 
requires consideration of the effective wind speed, ν. However, the only wind speed reading 
available to the controller will be the nacelle anemometer measurement,  𝑉 , which can be 
interpreted as a very noisy measurement of ν, 
 

V  = ν + ζ. 
 
The noise here, ζ, is assumed to be iid Gaussian. Using separability of wind turbine 
dynamics, the LHS can be re-expressed as; 
 

𝑄𝑎𝑒𝑟 − 𝐿(ωr) =  
1

2
ρARV 2𝐶𝑄( λ  ,β ) – L(ω 𝑟)  +  [g( V  )−g(ν)]. 

 

Hat symbols,  e.g.   λ  ,  denote measured quantities and g is the component of the separated 
wind turbine dynamics which depends on the wind speed (see [1]); the function g is 
approximately linear and this along with ζ being treated as iid Gaussian implies that the 
term [g( V  )−g(ν)] will also be approximately iid Gaussian.  
 

Scaling the measured values by  
1

2
ρAR3ω 𝑟

2 we obtain measured quantities, H , of the form, 

 

H  = λ 
−2
𝐶𝑄( λ  ,β ) + L*(ω 𝑟

−1) +  η(ω 𝑟
−2). 

 
This is the above rated regression equation. Note that since L is linear, L* is a second order 
polynomial in ω 𝑟

−1. The noise, η, is iid Gaussian but scaled this time by ω 𝑟
−2. 

 
Through a similar but simpler process (Taylor expansion about λ = λmax ) the below rated 
regression equation can be derived as, 
 

G  = λ 𝑚𝑎𝑥
−3

𝐶𝑃𝑚𝑎𝑥
 + L*(ω 𝑟

−1) + η . 
 

Note that in below rated operation the regression problem has become a polynomial 
regression. 

Figure 1. Mean function (blue) and 95% confidence 
intervals (grey) from the GP predictive distribution 
obtained by forming a prior and conditioning on the 
measured values shown by blue crosses.  

3. Below Rated Dynamics 
As outlined in Section 1, the below rated regression equation is in fact a polynomial 
regression problem. Attempts to perform regression in above rated conditions showed that 
the rotor speed varies too little for any changes in the losses values to be detected. 
Therefore, below rated operation and specifically the 𝐶𝑃𝑚𝑎𝑥

  tracking region (where the rotor 
speeds vary across the whole range of values) was identified as being a good candidate for 
extracting losses information. From the constant polynomial term here can also be extracted 
the 𝐶𝑃𝑚𝑎𝑥

 value of the turbine, since λmax  will be known for the turbine in question. 
 
GP learning algorithms normally scale cubically in the number of measurements. Fast 
implementations were developed for the case of GP polynomial regression which instead 
scale linearly in the number of data points. These new algorithms allow for fast GP 
polynomial regression on very large data sets. For example a linear regression case on one 
million data points now takes only a few seconds to complete. 
 
Figures 2 and 3 show GP and Least Squares (LS) polynomial regression predictions for 𝐶𝑃𝑚𝑎𝑥

  
and the linear losses function using simulated data from the Supergen Exemplar 5MW wind 
turbine model. The true 𝐶𝑃𝑚𝑎𝑥

  value for the model is 0.4885. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The GP predictions can be seen to have smaller error than the LS predictions. Furthermore, 
the GP predictions are tightly clustered, whereas the LS results show very large spreads. 

Offsets are present in the predictions which are due to the asymmetry of the function λ 
−3

, 
the offset is generally very small (a few percent) for the 𝐶𝑃𝑚𝑎𝑥

  prediction but noticeable for 
the losses prediction. 
 
From an O&M perspective it is changes in these quantities which are important and hence, 
even with an offset, the tight clustering of the GP predictions means that changes in the 
losses function or 𝐶𝑃𝑚𝑎𝑥

  value can be detected. This information could then potentially feed 
into maintenance scheduling or fault prediction efforts. 

Figure 2. 𝐶𝑃𝑚𝑎𝑥
  estimates from both 

GP and LS polynomial regression. 
Figure 3. Losses function estimates 
from both GP and LS polynomial 
regression. The true linear losses 
function is also shown. 

4. Batch Processing 
The wind field which interacts with a wind turbine is turbulent and non-stationary, i.e. the 
characteristics of the wind field will change over fairly short timescales (10-30 mins). 
Changes in the wind field structure will result in different noise characteristics for our 
regression equations, hence, it is desirable to try and limit the time over which data is 
collected for a given regression implementation in order to avoid mixing noise types.  
 
However, for the sake of accuracy and to have greater certainty in our results it is also 
desirable for our predictions to be based on as much data as possible. Within a LS framework 
these two requirements are irreconcilable. GP regression on the other hand can allow for 
both constraints as follows: the GP predictions from a given dataset give a probability 
distribution over the possible functions from which the data could have arisen. Therefore, 
given a dataset, D1, the GP predictive distribution GP1 can be formed from regression on D1; 
when a different dataset D2 becomes available we can similarly form GP2 from regression on 
D2. A refined predictive distribution can then be obtained by probabilistically combining GP1 

and GP2, in the Bayesian sense, to give GP1&2. As new data becomes available GP1&2 can be 
further refined and so on. A schematic representation of this process is shown in Figure 4. 
Note also that this process of refining predictions removes the need for large amounts of 
data storage since after a prediction has been made on a given dataset, the data itself can be 
discarded. 
 
 
 
 
 
 
 
 

Figure 4. Schematic diagram of GP 
batch processing. 

5. Current and Future Work 
Current work is looking to optimise and test batch processing of below rated dynamics 
predictions. Once this stage has been completed, above rated dynamics identification will 
be investigated in a similar fashion and batch processing  procedures developed for this 
case. Having developed these techniques to identify wind turbine dynamics from measured 
data, the final stage will be to understand how best to apply this new information to 
improve wind turbine control. 
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