

Wind Turbine Structural Load Reduction with Pitch Sensor Fault Compensation

Supervisors: Prof Ron J. Patton, Prof Jim M. Gilbert Yanhua Liu

Email address: Y.Liu@2015.hull.ac.uk

Introduction: Wind turbine dynamic loads caused by rotational sampling of turbulence, tower shadow and wind shear affect the life and performance of wind turbines. Individual Pitch Control (IPC) is an effective way to overcome this problem. However, pitch sensor faults affect the IPC performance in reality. It is valuable to consider pitch sensor fault compensation in wind turbine load mitigation control.

Work Overview

A. LQR-based IPC for blade & tower load reduction

Different controlled variant for structural load mitigation

Controlled Variant	Blade Flapwise	Tower Fore-aft	Tower Side-side
Collective Pitch Angle	×	\checkmark	×
Individual Pitch Angle	\checkmark	\checkmark	\checkmark
Generator Torque	×	×	\checkmark

B. UIO based pitch sensor faults estimation & compensation

• Pitch actuator systems modelling (4 pitch sensor faults considered)

Simulation Results

nc

lusions

1.0

A. Comparisons between CPC and LQR & PI based IPC

B. Sensor Fault estimation & compensation

Pitch sensor 1 suffers from one of the considered 4 faults

Time-domain analysis with mean wind speed (23m/s)

Case	Genpower	Pitchrate	Bending	Tower_foreaft	Tower_sid
CPC	133.5	0.0084	2733.4	10628	7234.9
PID	142.0	0.0619	1832.9	10858	7801.3
LQR	119.2	0.0893	2128.4	8879.6	7179.3

Frequency analysis

LQR can reduce flapwise bending (1P 0.2Hz) & tower fore-aft bending (0.3Hz) together without enhancement of generator power & tower side-side bending at cost of pitch travel.

500 600 700 800 900 1000 500 600 700 800 900 1000

800 900 1000 700 800 900

Multiplicative fault = 0.001t+0.8

Total failure = 0

- Designed UIO estimate 4 faults in 3 different pitch control cases.
- Verified the robustness & effectiveness of proposed UIO.
- According to sensor fault estimation, the fault hiding strategy used to compensate fault effects.
- Important to consider performance of designed load reduction controller in faulty cases to have better comprehensive evaluation of proposed controllers, here LQR based IPC better than PI-based IPC.