

Foundation Design for the Beatrice Offshore Wind Farm

R. McLean – SUPERGEN Wind Hub General Assembly, 08th November 2018

Contents

Introduction to Beatrice

Foundation Design Challenges

- Site characterisation
- Pile design
- Jacket design
- Fabrication approach
- Installation considerations
- Other challenges

Conclusions

Introduction

Overview

588MW offshore wind farm in the Moray Firth

Clean electricity for 450,000 homes

Overall project £2.6bn

Site:

Circa 13km offshore

132km²

Water depths 35-55m LAT

Scotland's largest offshore wind farm!

Overview

Offshore structures

84no. 7MW wind turbine generators (WTGs)

2no. offshore transformer modules (OTMs)

Foundations = jackets on driven piles

86 jackets; 85,000 tonnes

344 piles; >14km total length; 44,000 tonnes

Deepest offshore wind fixed structures in the world

SSE Offshore Wind Alliance

Framework of key suppliers designed to address the key challenges of Round 3 offshore wind and drive efficiencies in SSE's offshore wind programme.

Collaborative work through Concept and FEED between Developer, WTG and OSP Supplier, Installation contractor, Fabricator and Designer.

Foundation Design Challenges

Site Characterisation

Vast site

Available data - onshore

Available data - offshore

Phased investigation

Pile Design Process

Loading

Relatively small vertical load

Large horizontal loads from wind, waves and currents

High overturning moment at mudline

Resisted by piles in 'push / pull'

Piles work in compression & tension

Cyclic

Pile axial capacity

Need efficiency & reliability

Which method?

Jacket Design Process

- Clustering approach
- Structural analyses

Design Process

Design Process: Coupled Analysis

Pre-processing:

> ~1,000 wave loading simulations

SWP Analysis:

> Up to 20,000 combined wave + turbine simulations

Post-processing (Retrieval):

- > ~300 critical ULS simulations
- > 232 FLS simulations
- Code checking

Design Process: Uncoupled Analysis

Design Process: AFC Design

Fabrication

Beatrice Foundation Fabricators

Design for Serial Fabrication

Common TP & Upper Jacket

Cluster Specific Lower Jacket

Installation

Pile Installation risks

Boulders

Bedrock horizons

Strong and laterally traceable seismic reflectors

Identified in intact Lower Cretaceous

Variable in lateral extent

Some have corresponding evidence in the borehole data

Some relate to sandstone beds

Mitigation

Remediation = drive-drill-drive

Derive method to assess

Reduction of capacity from drilling

Shaft friction increase from ageing that can be relied upon

Capacity gain from concrete plug

Analyse impact of drilling at varying depths with and without concrete plug

Installation contractor has clear pre-defined scenarios to know instantly whether:

Pile must be abandoned,

Pile can be saved with a concrete plug

Pile does not require a concrete plug

Figure 2-2 Illustration of drive-drill-drive proposal – oase with concrete plu

n filia unitario de a companya	5000	10000	15000	20000	25	000 3	35000	Scour II-Gr II-P-Co
				((II-Gr
					!	()		
	Cyclic o	capacity (or capacity (or capacity (or capacity (or	ompression ompression	n with con n) - Reduc n with con	crete p	lug) - Red d		II-P-Co

	Pile Tip Penetration at Start of Drill-out									
Design Penetration		Drill-out SIBLE		te Plug ulred	Single Drill-out NOT FEASIBLE					
	from (m)	to (m)	from (m)	to (m)	from (m)	to (m)				
40.0	0.0	40.0	20.0	40.0						
48.0	0.0	48.0	44.0	48.0						
44.9	0.0	39.5	38.0	39.5	39.5	41.5				
44.5	41.5	44.9	41.5	44.9	35.0					
	0.0	35.5	22.0	27.0	35.5	37.5				
39.7			32.5	35.5						
	37.5	39.7	37.5	39.7						
43.8	0.0	43.8	40.0	43.8						
31.2	0.0	31.2	28.5	31.2						
28.5 (s)					0.0	28.5				
37.6	0.0	37.6	28.0	37.6						
37.1	0.0	37.1	33.0	37.1						
43.0	0.0	43.0	16.0	43.0						
41.4 (s)					0.0	41.4				
36.2	0.0	32.0			32.0	34.5				
30.2	34.5	36.2	34.5	36.2	32.0					
40.3	0.0	35.5			35.5	38.0				
40.3	38.0	40.3	38.0	40.3	33.5					
42.4	0.0	42.4	39.0	42.4						

Jacket Installation

- Transportation fatigue
- Upending vs vertical towing
- Installation vessel limits
- Early age cycling
- Safe access
 - Walk to work systems
 - Evacuation procedures

Conclusions

Conclusions

- Multi-disciplinary approach required to manage risk and optimise standardisation
- > Good design should consider:
 - Variable site conditions
 - Fabrication approach
 - > Installation approach
 - > Project programme
 - > Through life user safety
- Innovation, collaboration and adaptability are key to future success of industry.

Successes to date

- Design AFC and certification to programme
- > Pile installation completedDecember 2017
- Jacket installation completed July 2018
- > First power generation July 2018
- > Fully operational in 2019

Thank you

All images © Atkins unless otherwise stated.

