

A fast wind farm controller for production maximisation

T. Ahmad, P. C. Matthews, B. Kazemtabrizi

Energy Group, School of Engineering and Computing Sciences, Durham University, UK

Abstract

Motivation

Wind farm controller exploits the benefits of curtailing upstream turbines in a coordinated way for **increasing overall farm production**. A realistic farm controller shall be accurate and computationally efficient. This work presents a realistic farm controller uses a modified version of the Jensen wake model [1, 2] and Particle Swarm **Optimisation (PSO)** [3] for maximising farm output. One **onshore (Sole du Moulin** Vieux) and one offshore (Lillgrund) wind farm are used as case studies. The power output of case study wind farms was increased by up to 10% compared to state of the art greedy control, in certain wind conditions. The optimisation process was completed in under 15 seconds for the onshore one-dimensional array of 7 wind turbines and 50 seconds for the two-dimensional wind farm made of 48 wind turbines.

Objectives

1. Modification in the Jensen model for improved internal wind farm wake prediction. 2. Developing curtailment strategies based on C_P and Yaw angle.

3. Developing a dynamic farm controller with high accuracy and fast processing speed. 4. Assessment of the presented dynamic farm controller with simulations from one onshore and one offshore wind farm.

Figure 1a: Average power (kW) in all directions for the first four turbines at 8 \pm 0.5 m/s (SMV Wind Farm)

Figure 1b: Average power (kW) in all directions for the last three turbines at 8 \pm 0.5 m/s (SMV Wind Farm)

Durham University

Wind Deficit Model

1. Wake expansion up to 10D.

- 2. Determine which rows and columns can be affected by the wake produced.
- the turbines shadowed by wake 3. Find producing turbine.

4. Calculate the modified value of **wake decay coefficient** (k) varies according to wake added turbulence [4].

$$k = 1 / [2 l n (z / z_0)]$$
$$I_u = \frac{1.0}{ln(z/z_0)}$$

$$k = I_u/2$$

5. Find wind speed deficit [1,2]

6. Multiple wakes [2]

Figure 3b: Cp based optimisation of Lillgrund wind farm.

