Dynamic Wind Power Control for System Integration

> Review of PAC Controller
> The Generator-Response Following concept
> Feedforward Controller for stable use of the Generator-Response Following concept
> Part 2: Experimental DFIG prototype

> Questions
David Campos-Gaona, Olimpo Anaya-Lara, William Leithead
University of Strathclyde, Glasgow, UK.

PAC and the wind power plant controller (WPPC)

The WPP controller enables a wind power plant to provide the full range of ancillary services including synthetic inertia at the wind far level rather than a single turbine level.

Novel approach to provide ancillary services to the power grid from Wind Farms using PAC: The Generator-Response Following (GRF)

- Connect at the Point of Connection of the wind farm a fully instrumented small/medium synchronous generator to which the wind farm is slaved (using PAC) in order to provide a wide range of ancillary services by scaling up the response of small generator.

Advantages

- No direct power frequency measurements, which would be prone to high noise and lack of accuracy
- Capable of providing a full range of ancillary services, inertia, governor-droop control, reactive power, reserve, curtailment etc.
- Grid Code Compliant

Test network for GRF concept

Results of GRF considering no communication delay

Results of GRF Considering communication delay of 150 ms

 Engineering

Feedforward Controller for GRF

- Requirements:
- The HVDC converter station must use the energy stored in the capacitor to provide immediate GRF.
- Once the energy from the offshore wind farm arrives to the onshore HVDC station, it must replenish the lost energy in the capacitor without affecting the GRF profile.
- HVDC voltage must not decrease beyond a safety level.

$\mathbf{x}_{\text {ref: }}$: Desired \mathbf{x}
$\hat{\mathbf{x}}$: Measurement of \mathbf{x}

Feedforward Controller for GRF

DC voltage plant disturbance rejection

University of
Strathclyde
Transfer Function
Variable to control Plant
Capacitor Energy
$W=\frac{1}{2} C v_{d c}^{2} \quad \frac{d W}{d t}=\frac{1}{2} C \frac{d v_{d c}^{2}}{d t}=P_{i n}-3 / 2 v_{d} i_{d} \quad \frac{v_{d c}^{2}(s)}{i_{d}(s)}=P_{d c}(s)=-\frac{3 v_{d}}{C s}$

- Robust control of the dc voltage
- Internal Model Controller (IMC) with 2 degrees of freedom

IMC constant for robust control of dc voltage

$$
\begin{aligned}
K p_{d c} & =-\frac{\alpha_{d c} C}{3 v_{d}} \\
K i_{d c} & =\alpha_{d c} G_{d c} \\
G_{d c} & =-\frac{1}{3} \frac{\alpha_{d c} C}{v_{d}}
\end{aligned}
$$

Enhanced feedforward controller simulation results for a 150 ms delay

Feedforward controller enables using GFR with delay in communications

The stability of the grid is not compromised

Ideal results vs Feedforward controller results

The extraction of energy from the DC capacitor produces variation on the DC voltage, but it is adjusted by the enhanced feedforward controller to match the set-point value

Second part of research: DFIG prototype development

 Engineering

DFIG Experimental prototype

Digital Controller development

A program that

- reads 10 analog inputs using analog-todigital converters,
- reads 2 digital inputs of a rotor position encoder,
- executes 4 closed-loop D2F-IMC controllers,
- executes a PLL,
- executes 2 abc-to-dq0 transformation
- generates switching pulses for the 6 IGBTs of the VSC
was designed in floating point architecture with a sampling frequency of 12 kHz (i.e. 83.3 microsecond step program execution) using automatic code generation

Experimental results: Rotor Speed Controller

Reactive power consumption at machine terminals is 0

Rotor speed control is attained

Experimental results: Speed Control

Rotor speed is kept constant for changes in mechanical torque inputs

Experimental results: Reactive power control

Experimental Results: Advanced control

Experimental Results: Advanced control

The Stator and Rotor Current Harmonic distortion is eliminated using our proposed advanced controller technique

Experimental Results: Advanced control

Same result presented with shorter time division.

Questions?

d.campos-gaona@strath.ac.uk

