Scottish University of the Year 2017

School of Science and Engineering University of Dundee

Screw Piles for Offshore Wind Energy Foundation Systems: Project Update

SUPERGEN Wind General Assembly

Craig Davidson, Research Associate

Thursday 16th November 2017

Overview

- \rightarrow Project background
- → Progress in Physical Modelling
- → Benefits from Numerical Modelling
- \rightarrow Field testing to verify our work
- \rightarrow Outputs and opportunities

@UoD_Geotechnics

Screw piles for wind energy foundation systems: Deployment challenge

- \rightarrow Offshore wind is advancing in to deeper water
- → Foundation/support systems required for intermediate depths between monopile and floating
- → Systems may create increased foundation operation events (4 piles per jacket)
- → Concern/regulations associated with noise from piling (continuous long term installation events)
- → Cost effective solution required (20-30% cost)
- \rightarrow Jacket structures supported on screw piles?

Screw piles for wind energy foundation systems

- → Physical modelling, numerical modelling, field scale testing
- → Investigate optimised design solutions
- \rightarrow Improved design methods for future implementation

V++++/

Screw pile introduction

- → Tubular steel core/shaft
- → Single/multiple helical plates
- \rightarrow Helices regularly spaced
- \rightarrow Nomenclature
- \rightarrow Many uses:
 - → Started offshore: Maplin Sands Lighthouse (1838)
 - \rightarrow Contemporary use typically onshore
 - \rightarrow Pylons, guy lines, underpinning...
- → Benefits over straight-shafted pile:
 - \rightarrow Improved axial capacity
 - \rightarrow Lower installation noise

Screw pile design considerations: How big is an offshore screw pile?

How big are our loads in 80m water depth?

Table 1. Loads acting on screw pile (negative value indicates tensile load)

Load Direction	Upwind	Downwind
Horizontal (MN)	6.28	6.28
Vertical (MN)	-26.14	34.85

FOS = 1.35 (1.5 minimum in API RP2A-WSD)

Dims in m unless stated otherwise

Centrifuge testing at UoD: Scaled up but non-optimised geometry

Centrifuge testing : Installation torque and vertical force requirements

dundee.ac.uk Very dense sand

Centrifuge testing : Post installation performance

Information redacted

Centrifuge testing: Post installation performance

- \rightarrow Why the poor performance?
 - \rightarrow Geometry outside of range of experience?
 - \rightarrow D_h/D_c too low (1.9-2.83), Minimum 2.5-3?
 - → Uplift factor calculated based upon Das & Shukla (2013) = N_q = 80 (assuming a shallow failure)
 - \rightarrow Back figured N_q = 25!!
 - \rightarrow Perko N_q' = 336 but resistance limited to that at 2D_h
 - → Existing approaches based upon deep and shallow mechanisms H/Dh may not be valid for large Dc and low D_h/D_c

Information redacted

v****

- → Numerical modelling advantages in predicting effects of geometry changes/efficient (S/D_f)
- → Finite Element Analysis (FEA) cannot model large scale deformation (Screw piles). 10-20m?
- → Material Point Method (MPM) can model effects of screw pile installation on soil body
- \rightarrow Key components of DU approach
 - \rightarrow Moving mesh for displacement boundary conditions
 - → elasto-plastic material models for both soil and interface
- → Plan to map changes on soil from MPM on to standard FE as starting point. MPM to captures installation phase.

Moving mesh: a mesh always conforming with the boundary of the deformed body.

(a) Initial computational mesh and material points, (b) material point after twist 45° without moving mesh, (c) material point with moving mesh

Screw pile twists and penetrates over large distances

Durham University

Numerical modelling: Progress to date

- → Decomposed the to rotation and translation, and developed codes for 2D modelling of motions
- → The standard MPM and several advanced extensions investigated to identify optimal for modelling strategy
- → Strategies for accuracy and stability determined:
 - \rightarrow non-uniform triangular mesh
 - \rightarrow implicit implementation
 - \rightarrow convected particle domain interpolation
 - → finite-volume particle domains for quadrature
- → Next step: Combine methods used in 2D models to develop the 3D model

Vertical translation

Field testing: Identifying field study test sites. Southampton

- → Working with Roger Bullivant (RBL) to identify suitable test sites and design field tests.
- → Desk study carried out on the feasibility of two sites proposed by RBL - Sommerford Keynes and Warmell Quarry.
 - → Sites ruled out due to unsuitable ground conditions
- → QinetiQ's Hurn proving ground identified as a possible sand test site
 - → Military vehicle test site (25km from UoS)
 - → Substantial supporting facilities
 - \rightarrow Promising ground conditions
 - → Potential to become a national sand field study resource?
- \rightarrow In discussions with with QinetiQ and In Situ SI dundee.ac.uk

Field testing: Designing equipment & Field tests

- → Field test design and model testing has identified need for specialist instrumentation
 - → UoD work feeding into design of a bespoke wireless combined torque-load cell
 - → RBL interested in potential for existing CFA piling rig fleet in UK
- → UoS to design field piles and installation equipment based upon coming UoD testing
 - \rightarrow Access to site required to characterise soil (CPT)
 - → Ordering and fabrication of piles based upon UoD findings and suggestions.

Some questions to tackle as the project progresses

- → Expanding the prediction of installation behaviour to in service performance
- \rightarrow Cyclic performance
- \rightarrow Behaviour in other soil types
- \rightarrow Uplift factors
- \rightarrow Lateral screw pile behaviour and performance

(b) D_{ρ} =750mm (Flange at 1.0mbgl)

FE Modelling of a laterally loaded screw pile (Al Baghadadi et al 2015)

Tensile cyclic loading of a single plate screw pile (Schiavon et al 2017)

- → Screw piles have potential as new foundation type for deep water offshore wind energy
- → Current screw pile designs are inadequate for imposed loads
- → Required upscaling of designs leads to large installation force and torque
- → Current design methods for axial capacity are questionable
- → Centrifuge & numerical modelling with field verification will address the design issues