

Electricity, Wind and Carbon

Professor Richard Green

Two recent trends: The Rise of Wind

The Reduction in CO₂ Emissions

Maximising the Carbon Impact of Wind Power

1) Improve wind output simulations based on reanalysis weather data

- 2) Estimate hourly emissions for the British power sector
- 3) Assess the impact of wind output, fuel prices, and wind forecast accuracy

Wind simulations from Renewables.Ninja Stefan Pfenninger and Iain Staffell

Where do the emissions come from?

Electricity Generated and CO₂ emissions in GB, 2010

Source: <u>www.electricinsights.co.uk</u> (Imperial College and Drax Power)

Electricity Generated and CO₂ emissions in GB, 2016/7

Source: <u>www.electricinsights.co.uk</u> (Imperial College and Drax Power)

What's behind the big picture?

Imperial College Business School

Demand and Emissions of CO₂ 21 March 2017

Changes in Demand and Emissions of CO₂ 21 March 2017

Preliminary answer?

- An extra MWh of demand raises emissions by 493 ± 1 kg
- An extra MWh of wind output cuts emissions by 462 ± 10 kg
- An extra MWh of solar output cuts emissions by 510 ± 8 kg
- Calculations of this kind have already been done by Hawkes AD, 2010, <u>Estimating marginal CO2 emissions rates for national electricity systems</u>, *Energy Policy*, Vol: 38, Pages: 5977-5987
- These are averages of marginal emissions factors that are likely to change over time, and hence VERY preliminary

Generation in Great Britain, 13-19 December 2014

Generation in Great Britain, 6-12 August 2016

What caused the change?

Shares of Thermal Generation

GB Fuel Prices

GB Fuel Prices

Preliminary answer?

When Coal is the marginal fuel (2009Q3 – 2011Q2, 2015Q4 – 2017Q1)

- An extra MWh of demand raises emissions by 521 ± 1 kg
- An extra MWh of wind output cuts emissions by 481 ± 15 kg
- An extra MWh of solar output cuts emissions by $526 \pm 11 \text{ kg}$ When Gas is the marginal fuel (2009Q1 – Q2, 2011Q3 – 2015Q3)
- An extra MWh of demand raises emissions by 468 ± 1 kg
- An extra MWh of wind output cuts emissions by 454 ± 13 kg
- An extra MWh of solar output cuts emissions by 451 ± 12 kg

More detailed calculations have already been done by Thomson, R., Harrison, G. & Chick, J.(2017) <u>Marginal Greenhouse Gas Emissions</u> <u>Displacement of Wind Power in Great Britain</u> *Energy Policy*

We will be "digging deeper" into the causal factors

Maximising the Carbon Impact of Wind Power

1) Improve wind output simulations based on reanalysis weather data

- 2) Estimate hourly emissions for the British power sector
- 3) Assess the impact of wind output, fuel prices, and wind forecast accuracy
- 4) Model future investment and operating decisions changing with wind

The MOSSI model Merit Order Stack with Step Investment

The MOSSI model Merit Order Stack with Step Investment

Future Electricity Output Renewables held at 2017 levels, £50 Carbon price in 2050

Future Electricity Output Renewables continue to grow, £50 Carbon price in 2050

Imperial College Business School

Future Electricity Output Renewables held at 2017 levels, £250 Carbon price in 2050

Future Electricity Output Renewables continue to grow, £250 Carbon price in 2050

Thank you