

Improving Wind Turbine Induction Generator Diagnostic Reliability by Combining Electrical and Mechanical Fault Signals

Donatella Zappalá¹, Nur Sarma², Siniša Djurović², Christopher J. Crabtree¹, Anees Mohammed², Peter J. Tavner¹, Sandy Smith² ¹School of Engineering and Computing Sciences, Durham University, UK; ²School of Electrical and Electronic Engineering, Power Conversion Group, University of Manchester, UK.

1824 The University of Manchester

MANCHESTER

Durham

University

Abstract

Rotor electrical unbalance (REU) is one of the major contributors to WT generator failure rate¹⁻³. Most fault detection techniques developed so far rely on the analysis of a single signal, with a risk of missed faults or false alarms, making accurate diagnosis difficult. This research investigates REU wide-band spectral effects on wind turbine induction generator electrical and mechanical signals. Predictions from analytical expressions derived from a harmonic time-stepped generator model are compared with measurements made on a 30kW induction generator laboratory test rig. Results show that REU results in substantial increases of slip-dependent sidebands of supply-induced, inter-harmonic components of current, power, electromagnetic torque, shaft speed, mechanical torque and frame vibration spectra.

Objectives

- Investigate the wide-band manifestation of REU-related side-bands of supply harmonic and slotting induced frequencies in electrical and mechanical signals.
- Define and cross-correlate the best diagnostic REU reliability condition monitoring indicators for incorporation into existing commercial wind turbine condition monitoring systems.
- Fuse results from simultaneous real-time side-band monitoring in multiple signals to enhanced REU fault recognition sensitivity and allow assessment of damage severity.

Generator Rotor Electrical Unbalance

Model Study

	Closed-Form Analytical Expressions		
Generator Signal	Balanced Rotor (CF)	Unbalanced Rotor (CF ± 2nsf)	
Stator Current, I _s	$ i \pm 6k(1-s) f$	$ (i \pm 2ns) \pm 6k(1-s) f$	
Stator Active Power, Electromagnetic Torque, Rotational Speed, <i>P_e, T_e</i> and <i>N_s</i>	$ [l \pm i] \pm 6k(1-s) f$	$ ([l \pm i] \pm 2ns) \pm 6k(1 - s) f$	

f = supply frequency; s = rotor slip; i, l = supply harmonic order = 1,2,3..; k = air-gap magnetic field pole pair number = 1,2,3..; n = 0,1,2,3...

REU-induced side-band equations can be resolved into two distinct sub-groups depending on whether they are manifested on the harmonic (HS) or slot harmonic carriers (SHS). A harmonic time-stepped generator model has been used to examine faults and validate proposed closed-form analytical expressions to describe them.

Experimental Study

Model predictions have been validated in a series of experiments on a 30 kW induction generator laboratory test rig.

Fault indicators: load and REU severity dependency

<u>Slotting harmonic side-bands (SHS)</u>

Experimental results show that REU produces consistent, high fault and load sensitivity current $\pm 2sf$ side-band spectral increases around slotting components (i = 1, k = 1, 2), in addition to the traditional HS_{110} .

In the Table, the tick and cross marks indicate whether or not the progressive increase in REU corresponds to consistent increase of the examined side-band magnitude.

CE	Sido-band	1530	1560	1590
СГ	Side-Daliu	rpm	rpm	rpm
SH _{I,1}	SHS _{I.1L}	\checkmark	\checkmark	\checkmark
	SHSL1U	×	\checkmark	\checkmark
SH _{I,2}	SHS	×	\checkmark	\checkmark
	SHSI2U	×	\checkmark	\checkmark
	сцс ^{1,20}	6		

Most of the I_s SHS components are able to progressively track REU severity within the full generator operating range.

Conclusions

References

Closed-form analytic expressions defining electrical and mechanical signal spectral content for healthy and faulty conditions have been derived and validated by comparison with predictions from a harmonic generator model and experiments on a fully instrumented 30 kW laboratory test rig.	 Alewine, K., Chen, W.: 'Wind turbine generator failure modes analysis and occurrence'. Proc. Windpower, Dallas, Texas, May 2010, pp. 1-6. Alewine, K., Chen, W.: 'A review of electrical winding failures in wind turbine generators'. Proc. IEEE Electrical Insulation Conference (EIC),
Agnitude of slip-dependant side-bands of a wide range of both supply frequency and slotting harmonics show a significant increase under faulty REU conditions.	 Annapolis, MD, USA, June 2011, pp. 392-397. 3. Carroll, J., McDonald, A., McMillian, D.: 'Reliability comparison of wind turbines with DFIG and PMG drive trains', IEEE Transactions on Energy Conversion, 2015, 30, (2), pp. 663-670, 12.
Specific side-bands of I_s , P_e , T_e , T_m and N_s giving clear and consistent fault recognition across the generator operating range have been identified as high diagnostic reliability indicators of REU.	4.Djurović, S., Vilchis-Rodriguez, D.S., Smith, A.C.: 'Supply induced interharmonic effects in wound rotor and doubly-fed induction generators', IEEE Transactions on Energy Conversion, 2015, 30, (4), pp. 1397 - 1408.

SUPERGEN Wind Hub General Assembly 2017 – Durham – 27 April 2017