

MAXFARM

MAXimizing wind Farm
Aerodynamic Resource via
advanced Modelling – an
overview

Philip Hancock, SUPERGEN General Assembly, 27th April 2017, Univ of Durham Partners:

Imperial College

Loughborough

STFC-Rutherford Appleton

Strathclyde

Surrey

DNV GL - Energy

BMT Fluid Mechanics

Catapult Offshore Renewable Energy

Catapult Satellite Applications

Zephir LiDAR

Sgurr Energy

Zenotech

RES

Key Objectives

- To improve understanding and modelling of offshore wind conditions;
- To improve understanding and modelling of wake losses within and downwind of offshore wind farms;
- To improve understanding and modelling of the dynamic loading, fatigue and accumulated damage for offshore wind turbines;
- To improve turbine life and overall wind farm efficiency.

Interactions

Work Packages - outline

Work packages:

WP1: Wind conditions

WP2: Wake losses and wake-turbine inflow

WP3: Predicting loads and fatigue

WP4: Wind farm control

Key WP Interactions:

Wind Condition Analysis (WP1.1, 1.2)

Estimated power output for a turbine at Greater Gabbard during gust front event vs. a non event day at the same location.

Wind Condition Analysis (WP1.1, 1.2)

- Satellite mesoscale wind field data (provided by DTU)
- Events highlighted and compared to models
- WRF simulations to show effect on power timescales

Wind Farm Analysis/Modelling (WP2.1, 2.2)

- CFD wake effects simulations of different turbine separations
- CFD wake effects of farm orientation to wind rose

 CFD effects of atmospheric stability on farm productivity (using production data from Elexon and met data from

ECMWF)

Very Unstable

Wake losses from satellite measurement

(WP2.4)

- Characterising the wakes of offshore wind farms with satellite radar data. (Synthetic Aperture Radar, SAR.)
- The radar backscatter over the sea can be related to wind speed at the surface.
- From this to compare the effects of:
 - Mean ambient wind speed
 - Location relative to shore
 - Turbine spacing
 - Atmospheric stability

Wake losses from satellite measurement

(WP2.4)

SAR Image of Thames Estuary wind farms

- Sentinel 1A on 2015-12-03
- Ascending pass
 (so flipped vertically)
- White blobs are turbines and some ships
- Wind direction approximately from South

Wake losses from satellite measurement

(WP2.4)

Wind speed around several Thames Estuary wind farms, derived from Sentinel-1 satellite data

Effects of atmospheric stability (WP1.3, 2.3)

Cases:

Unstable

Stable - no inversion; with inversion

Neutral – datum cases

Smoothing

Predicting loads and fatigue (WP3)

- Comprehensive fatigue life prediction
- Interfacing turbine-level aeroelastic models to detailed fatigue models
- Model reduction methods for fatigue prediction from individual tower to farm-level analysis
- Integrating farm-level wake predictions with rotor inflow conditions

Goal: from conditions to fatigue

Aerodynamic-aeroelastic modelling (WP3.3)

Baseline - In-house aeroelastic simulation framework (SHARPy)

- Time-domain, nonlinear solver
- Includes composites (aeroelastic tailoring), flaps, arbitrary inflow
- Numerically efficient (C++/Fortran), all wrapped in Python

Imperial College London

Interfacing with fatigue modelling (WP3.2)

- Based on the DTU 10 MW Reference Turbine: 90m long blades.
- DTU Abaqus shell model and cross section meshes/data
- STFC to apply loads from the IC aeroelastic model (aerodynamic, gyroscopic, ...) to Abaqus shell model of a blade.

Fatigue prediction (WP3.1)

- Improve the application of damage equivalent load analysis with more detailed.
- T-joint is a fatigue critical area work has been focused on assessing detailed stresses in this area.
- Shell models quick but not necessarily accurate sub-models or a fine solid mesh can be computationally expensive.
- Compromise based on shell model and a series of test case sub-models (12).

Aero-structure - model-order reduction (WP3.3)

 Reduced-order models of linearized aeroelastic system for integration in farm control:

- Input: time history on each aerodynamic panel (mapped from rotor plane)
- Output: time-history of resultant into detailed FEM for fatigue studies.

Aero-structure - model-order reduction (WP3.3)

- Reduction through balanced residualisation of discrete system
- Option 1: Balancing on general aerodynamic description, G₀

Option 2: Balancing on problem-dependent I/O, e.g.

Unsteady aero-elasticity on a cantilever wing

Goland wing (Goland, 1945)

- We obtain flutter behaviour after two independent operations:
 - 1. Compute AIC, (discrete) frequency-domain from q to Q
 - 2. Close the loop with structural feedback, check stability

- Wind farm control objectives
 - maximise generated power
 - Provide ancillary services to grid
 - Minimise O&M costs

- Wind farm control design and analysis models are required.
 - Performance assessment is over full operating envelop.
 - Simulation should include the wind field & wakes, turbines (up to 100+) and wind farm controller.
 - Fast simulation execution times required.

- Wind farm simulation has been developed
- Fast execution with following times for 600sec simulations
 - complete simulation including wind field and wind farm controller, nonoptimised turbine model

Number of turbines	5	10	20
Simulation time	50secs	85secs	175secs

simulation with optimised turbine models without wind field or controller

Number of turbines	100	
Simulation time	300secs	

Turbine structural loads up to 6P represented.

Comparison of loads to Bladed

Loads with mean wind speed 8m/s

WF simulation

Bladed

Loads with mean wind speed 14m/s

Glasgow

Average power deficits (ratios to power without wake losses).

- Farm consists of 5 x 5MW turbines
- Mean wind speed 8m/s
- Turbulence intensity 10%
- 3 wind speed directions
 - -0^{0} , 30° and 60°
- Simulation time 600 secs
- Execution times 45 55

University of

Curtailment of generated power(from 50MW to 45MW).

- Farm consists of 10 x 5MW turbines
- Mean wind speed 14m/s
- Turbulence intensity 10%
- Curtailment 5MW
- Simulation time 600 secs
- Execution times 80 85 secs

University of

Thank you